1
|
Zhu R, Guo JJ, Yi TC, Hou F, Jin DC. Potential of a winterschmidtiid prey mite for the production of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:571-584. [PMID: 37907795 DOI: 10.1007/s10493-023-00860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Mass rearing of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) using natural (prey) methods is costly and laborious, limiting its application in the biological control of pests. A high-production, low-cost method using a prey substitute would help to relieve this problem. Oulenziella bakeri Hughes (Acari: Winterschmidtiidae) could be an alternative prey source, but studies on the reproductive parameters of N. californicus under rearing conditions are lacking. This study evaluated the potential of O. bakeri as an alternative prey in N. californicus rearing by comparing developmental parameters among N. californicus reared on three diets based on an age-stage two-sex life table. We found that the preoviposition period and developmental time of N. californicus did not vary based on diet. The fecundity of N. californicus adults reared on O. bakeri was 29.8 eggs per female, which was lower than that of adults reared on Tetranychus urticae Koch (Acari: Tetranychidae) (42.9 eggs per female); there was no significant difference between O. bakeri and apple pollen (30.2 eggs per female). The oviposition rate of mites fed on O. bakeri was 69% of that fed on T. urticae. Neoseiulus californicus reared on O. bakeri and apple pollen showed the same intrinsic rate of increase (0.25 per day), which was 86% of the rate of those fed on T. urticae. Compared with predatory mites reared on natural prey, N. californicus reared on O. bakeri had a high survival rate and good oviposition and population growth parameters, suggesting that O. bakeri is suitable for the rearing of N. californicus.
Collapse
Affiliation(s)
- Rui Zhu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Ministry of Agriculture, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Engineering Research Center of Medical Resourceful Healthcare Products, Guiyang Healthcare Vocational University, Guiyang, 550081, People's Republic of China
| | - Jian-Jun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Ministry of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Ministry of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Fei Hou
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Ministry of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Ministry of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhu R, Guo J, Li G, Liu R, Yi T, Jin D. Identification of potential sex determination genes and functional analyses in Neoseiulus californicus under prey stress. PEST MANAGEMENT SCIENCE 2022; 78:5024-5040. [PMID: 36056789 DOI: 10.1002/ps.7128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phytoseiid mites are important natural enemies of spider mites. Sex-determination mechanism are important basic scientific issues in the reproduction and evolution of predatory mites. Clarifying sex-determination mechanism may provide reference for exploring genetic approach to have the phytoseiid mites produce more female offspring, which could improve their effectiveness as a biological control agent. RESULTS We used transcriptome sequencing to identify and characterize 20 putative sex-determination genes in the phytoseiid mite Neoseiulus californicus, a species with uncommon pseudo-arrhenotoky, including doublesex-like (dsx1-like), transformer-2 (tra-2), intersex (ix), and fruitless-like (BTB2). A significant negative correlation was found between prey stress and offspring sex ratio. But the most genes identified showed no difference in expression between the groups with lowest and highest female offspring ratios. The hatching rate and sex ratio of female offspring were reduced when the ix gene was silenced, and the oviposition days and fecundity were reduced when the BTB2 gene was silenced. The fecundity was reduced when the tra2 gene was silenced and the snf gene is essential for oviposition in female. There was no effect on reproduction and female sex determination when silencing the dsx1-like and dsx2-like gene. CONCLUSION The genes BTB2, tra2 and snf are involved in oviposition, and ix may be involved in female sex determination and egg formation in Neoseiulus californicus. The results are conductive to further understanding molecular regulatory mechanism of sex determination in predatory mites and may provide a reference for better use of this predatory by producing more females. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Rundong Liu
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| |
Collapse
|
3
|
Evaluation of Natural and Factitious Food Sources for Pronematus ubiquitus on Tomato Plants. INSECTS 2021; 12:insects12121111. [PMID: 34940199 PMCID: PMC8703740 DOI: 10.3390/insects12121111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Biocontrol practitioners have increasingly released generalist predators to control a variety of greenhouse pests. In this study, the effects of alternative food sources on the oviposition rate and the population dynamics of the mite Pronematus ubiquitus were assessed. The alternative food sources were selected among those the mite may encounter or be applied to the tomato crop. Abstract Pronematus ubiquitus (McGregor) is a small iolinid mite that is capable of establishing on tomato plants. Once established, this mite has been shown to control both tomato russet mite, Aculops lycopersici (Tryon) (Acari: Eriophyidae), and tomato powdery mildew (Oidium neolycopersici L. Kiss). In the present study, we explored the effects of a number of alternative food sources on the oviposition rate in the laboratory. First, we assessed the reproduction on food sources that P. ubiquitus can encounter on a tomato crop: tomato pollen and powdery mildew, along with tomato leaf and Typha angustifolia L. In a second laboratory experiment, we evaluated the oviposition rate on two prey mites: the astigmatid Carpoglyphus lactis L. (Acari: Carpoglyphidae) and the tarsonemid Tarsonemus fusarii Cooreman (Acari: Tarsonemidae). Powdery mildew and C. lactis did not support reproduction, whereas tomato pollen and T. fusarii did promote egg laying. However, T. angustifolia pollen resulted in a higher oviposition in both experiments. In a greenhouse trial on individual caged tomato plants, we evaluated the impact of pollen supplementation frequency on the establishment of P. ubiquitus. Here, a pollen addition frequency of every other week was required to allow populations of P. ubiquitus to establish.
Collapse
|
4
|
Tixier MS, Otto J, Kreiter S, Dos Santos V, Beard J. Is Neoseiulus wearnei the Neoseiulus californicus of Australia? EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:267-277. [PMID: 24122169 DOI: 10.1007/s10493-013-9740-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Species of the family Phytoseiidae are known as predatory mites, some of them being used in crops to control mite pests, all around the world. Neoseiulus (=Cydnodromus) californicus is among the most commonly used Phytoseiidae species in biological control programs, especially in vineyards, orchards and vegetable fields. This species is distributed world-wide but has never been reported from Australia. On the other hand, specimens morphologically close to N. californicus have been assigned to a species called Neoseiulus wearnei, only reported from Australia. Investigations based on morphological and molecular comparisons were carried out to investigate whether these two taxa are conspecific. Morphological analyses showed no significant difference between specimens identified as N. wearnei and N. californicus. Similarly, genetic distances between these taxa were null, showing that all these specimens belong to the same species. Although it is not yet possible to conclude that all the specimens identified as N. wearnei are N. californicus, we can conclude that N. californicus is present in Australia. The information about the biology of N. californicus can thus now be applied to the Australian population of this species for biological control purposes.
Collapse
|
5
|
Cruz WP, Sarmento RA, Teodoro AV, Neto MP, Ignacio M. Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:509-519. [PMID: 23417700 DOI: 10.1007/s10493-013-9663-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Seasonal changes in climate and plant diversity are known to affect the population dynamics of both pests and natural enemies within agroecosystems. In Brazil, spontaneous plants are usually tolerated in small-scale physic nut plantations over the year, which in turn may mediate interactions between pests and natural enemies within this agroecosystem. Here, we aimed to access the influence of seasonal variation of abiotic (temperature, relative humidity and rainfall) and biotic (diversity of spontaneous plants, overall richness and density of mites) factors on the communities of phytophagous and predatory mites found in a physic nut plantation and its associated spontaneous plants. Mite sampling was monthly conducted in dicotyledonous and monocotyledonous leaves of spontaneous plants as well as in physic nut shrubs over an entire year. In the dry season there was a higher abundance of phytophagous mites (Tenuipalpidae, Tarsonemidae and Tetranychidae) on spontaneous plants than on physic nut shrubs, while predatory mites (Phytoseiidae) showed the opposite pattern. The overall density of mites on spontaneous plants increased with relative humidity and diversity of spontaneous plants. Rainfall was the variable that most influenced the density of mites inhabiting physic nut shrubs. Agroecosystems comprising spontaneous plants associated with crops harbour a rich mite community including species of different trophic levels which potentially benefit natural pest control due to increased diversity and abundance of natural enemies.
Collapse
Affiliation(s)
- Wilton P Cruz
- Graduate Programme in Plant Science, Federal University of Tocantins (UFT), PO BOX 66, Gurupi, TO, Brazil
| | | | | | | | | |
Collapse
|
6
|
Tachi F, Osakabe M. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey–predator system. Naturwissenschaften 2012; 99:1031-8. [DOI: 10.1007/s00114-012-0984-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/02/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
7
|
OKASSA MIREILLE, KREITER SERGE, GUICHOU SABINE, TIXIER MARIESTÉPHANE. Molecular and morphological boundaries of the predatory miteNeoseiulus californicus(McGregor) (Acari: Phytoseiidae). Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01717.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Abad-Moyano R, Pina T, Ferragut F, Urbaneja A. Comparative life-history traits of three phytoseiid mites associated with Tetranychus urticae (Acari: Tetranychidae) colonies in clementine orchards in eastern Spain: implications for biological control. EXPERIMENTAL & APPLIED ACAROLOGY 2009; 47:121-132. [PMID: 18931925 DOI: 10.1007/s10493-008-9197-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/26/2008] [Indexed: 05/26/2023]
Abstract
The management of Tetranychus urticae, a key pest of clementine trees, is mainly based on the use of acaricides. However, more environmentally safe measures, such as biological control, are being encouraged. Life-history traits of the three most abundant phytoseiid mites associated with T. urticae on this crop (Euseius stipulatus, Phytoseiulus persimilis and Neoseiulus californicus) were studied. The experiments were performed under laboratory conditions (25 degrees C, 80 +/- 5% RH and 16:8 h (L:D)) on clementine leaves and T. urticae as prey. Euseius stipulatus could not complete its life cycle, whereas P. persimilis and N. californicus completed it satisfactorily. The estimated intrinsic rate of increase (rm) was significantly higher for P. persimilis (0.344 day(-1)) than for N. californicus (0.244 day(-1)) and both were higher than the rm value of T. urticae on clementine leaves. Implications of these results for the biological control of T. urticae in this crop are discussed.
Collapse
Affiliation(s)
- Raquel Abad-Moyano
- Unidad de Entomología, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, Carretera de Moncada a Náquera (km. 4.5), 46113 Moncada, Valencia, Spain
| | | | | | | |
Collapse
|
9
|
Weintraub P, Palevsky E. Evaluation of the predatory mite, Neoseiulus californicus, for spider mite control on greenhouse sweet pepper under hot arid field conditions. EXPERIMENTAL & APPLIED ACAROLOGY 2008; 45:29-37. [PMID: 18584132 DOI: 10.1007/s10493-008-9169-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 06/02/2008] [Indexed: 05/15/2023]
Abstract
The efficacy of Neoseiulus californicus (a generalist predatory mite) for the biological control of Tetranychus urticae, was compared to release of Phytoseiulus persimilis (a specialist predatory mite) and an acaricide treatment in sweet pepper plants grown in greenhouse tunnels in a hot and arid climate. To ensure uniform pest populations, spider mites were spread on pepper plants in two seasons; a natural infestation occurred in one season. Predators were released prophylactically and curatively in separate tunnels when plants were artificially infested with spider mites, and at low and moderate spider mite populations when infestations occurred naturally. Although spider mite populations did not establish well the first year, fewer spider mites were recovered with release of N. californicus than with all other treatments. In the second year, spider mites established and the prophylactic release of N. californicus compared favorably with the acaricide-treated plants. In the course of monitoring arthropod populations, we observed a significant reduction in western flower thrips (Frankliniella occidentalis) populations in tunnels treated with N. californicus as compared with non-treated control tunnels. Our field trials validate results obtained from potted-plant experiments and confirm that N. californicus is a superior spider mite predator at high temperatures and low humidities.
Collapse
Affiliation(s)
- P Weintraub
- Department of Entomology, Gilat Research Center, Agricultural Research Organization (ARO), Ministry of Agriculture, D.N. Negev 85280, Israel.
| | | |
Collapse
|