1
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
2
|
Frackenpohl J, Abel SAG, Alnafta N, Barber DM, Bojack G, Brant NZ, Helmke H, Mattison RL. Inspired by Nature: Isostere Concepts in Plant Hormone Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18141-18168. [PMID: 37277148 DOI: 10.1021/acs.jafc.3c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical concepts such as isosteres and scaffold hopping have proven to be powerful tools in agrochemical innovation processes. They offer opportunities to modify known molecular lead structures with the aim to improve a range of parameters, including biological efficacy and spectrum, physicochemical properties, stability, and toxicity. While recent biochemical insights into plant-specific receptors and signaling pathways trigger the discovery of the first lead structures, the disclosure of such a new chemical structure sparks a broad range of synthesis activities giving rise to diverse chemical innovation and often a considerable boost in biological activity. Herein, recent examples of isostere concepts in plant-hormone chemistry will be discussed, outlining how synthetic creativity can broaden the scope of natural product chemistry and giving rise to new opportunities in research fields such as abiotic stress tolerance and growth promotion.
Collapse
Affiliation(s)
- Jens Frackenpohl
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Steven A G Abel
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Neanne Alnafta
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - David M Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicola Z Brant
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rebecca L Mattison
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Li TY, Ye C, Zhang YJ, Zhang JX, Yang M, He XH, Mei XY, Liu YX, Zhu YY, Huang HC, Zhu SS. 2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax. PLANT DIVERSITY 2023; 45:104-116. [PMID: 36876306 PMCID: PMC9975478 DOI: 10.1016/j.pld.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/03/2023]
Abstract
Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.
Collapse
Affiliation(s)
- Tian-Yao Li
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Jie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Xing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Southwest Forestry University, Kunming, 650224, China
| | - Xin-Yue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Xiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - You-Yong Zhu
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hui-Chuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shu-Sheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
4
|
Zhao B, Wang H, Fan Z, Wu Q, Guo X, Zhang N, Yang D, Yu B, Zhou S. Mode of action for a new potential fungicide candidate, 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole by iTRAQ. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1603287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Haixia Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Xiaofeng Guo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Zhou P, Mo X, Wang W, Chen X, Lou Y. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores. Int J Mol Sci 2018; 19:E1271. [PMID: 29695083 PMCID: PMC5983687 DOI: 10.3390/ijms19051271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/05/2022] Open
Abstract
Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H₂O₂ but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera) nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH) Nilaparvata lugens and the striped stem borer (SSB) Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor.
Collapse
Affiliation(s)
- Pengyong Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaochang Mo
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wanwan Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xia Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Paulo PD, Lima CG, Dominiquini AB, Fadini MAM, Mendes SM, Marinho CGS. Maize plants produce direct resistance elicited by Tetranychus urticae Koch (Acari: Tetranychidae). BRAZ J BIOL 2017; 78:13-17. [PMID: 28658392 DOI: 10.1590/1519-6984.19915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/12/2016] [Indexed: 11/22/2022] Open
Abstract
Plants can be attacked by a wide variety of herbivores. Thus, developing protective mechanisms for resistance against these agents is an advantage for survival and reproduction. Over the course of evolution, many resistance mechanisms against herbivory have been developed by the plants. Induced direct and indirect resistance mechanisms can manifest in plants after herbivore attack. The two-spotted spider mite Tetranychus urticae is not a pest of maize crops (Zea mays), despite being reported infesting plants that may have resistances against this herbivore. We tested the hypothesis that maize plants would be able to induce direct resistance against T. urticae after, evaluating the effect of T. urticae infestation in maize plants on the development and reproduction of conspecifics. We tested induced direct resistance performing infestation and measuring biological parameters upon a second infestation. Maize plants, 40 days after sowing, were divided into two groups: 30 not infested by T. urticae (clean plants clean) and, 30 infested by the spider mite. Infestation of maize plants by T. urticae reduced the conspecific female adult survival. However, no change in the survival of immature or reproduction was observed. These results suggest the induction of induced direct resistances in maize by T. urticae. This is first report of direct resistance induction in Z. mays by the two-spotted spider mite T. urticae.
Collapse
Affiliation(s)
- P D Paulo
- Department of Agricultural Science, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| | - C G Lima
- Department of Agricultural Science, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| | - A B Dominiquini
- Department of Agricultural Science, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| | - M A M Fadini
- Department of Agricultural Science, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| | - S M Mendes
- Embrapa Milho e Sorgo, Sete Lagoas, MG, Brazil
| | - C G S Marinho
- Department of Agricultural Science, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil
| |
Collapse
|
7
|
Chang K, Chen JQ, Shi YX, Sun MJ, Li PF, Zhao ZJ, Zhu WP, Li HL, Xu YF, Li BJ, Qian XH. The discovery of new scaffold of plant activators: From salicylic acid to benzotriazole. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chang K, Shi Y, Chen J, He Z, Xu Z, Zhao Z, Zhu W, Li H, Xu Y, Li B, Qian X. The discovery of new plant activators and scaffolds with potential induced systemic resistance: from jasmonic acid to pyrrolidone. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00261g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel plant activators possessing a pyrrolidone scaffold was developed with the help of SHAFTS.
Collapse
|
9
|
Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. Priming for enhanced defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:97-119. [PMID: 26070330 DOI: 10.1146/annurev-phyto-080614-120132] [Citation(s) in RCA: 500] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
When plants recognize potential opponents, invading pathogens, wound signals, or abiotic stress, they often switch to a primed state of enhanced defense. However, defense priming can also be induced by some natural or synthetic chemicals. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often linked to immunity and abiotic stress tolerance. This review covers recent advances in disclosing molecular mechanisms of priming. These include elevated levels of pattern-recognition receptors and dormant signaling enzymes, transcription factor HsfB1 activity, and alterations in chromatin state. They also comprise the identification of aspartyl-tRNA synthetase as a receptor of the priming activator β-aminobutyric acid. The article also illustrates the inheritance of priming, exemplifies the role of recently identified priming activators azelaic and pipecolic acid, elaborates on the similarity to defense priming in mammals, and discusses the potential of defense priming in agriculture.
Collapse
Affiliation(s)
- Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany; , , ,
| | | | | | | |
Collapse
|
10
|
Chen X, Zhao K, Fan Z, Mao W, Li J, Ji X, Hua X, Zong G, Li F. Determination of Tiadinil and Its Metabolite in Flue-Cured Tobacco. J Chromatogr Sci 2014; 52:624-8. [DOI: 10.1093/chromsci/bmt090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|