1
|
Üremiş N, Üremiş MM. Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. J Biochem Mol Toxicol 2025; 39:e70133. [PMID: 39799559 PMCID: PMC11725306 DOI: 10.1002/jbt.70133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression. The heterogeneity of genetic and environmental factors involved in the process of neurodegeneration makes current treatment methods inadequate. However, the existence of common molecular mechanisms in the pathogenesis of these diseases may allow the development of new targeted therapeutic strategies. Oxidative and nitrosative stress damages membrane components by accumulating ROS and RNS and disrupting redox balance. This process results in the induction of apoptosis, which is important in the pathogenesis of neurodegenerative diseases through oxidative stress. Studies conducted using postmortem human samples, animal models, and cell cultures have demonstrated that oxidative stress, nitrosative stress, and apoptosis are crucial factors in the development of diseases such as Alzheimer's, Parkinson's, Multiple Sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. The excessive production of reactive oxygen and nitrogen species, elevated levels of free radicals, heightened mitochondrial stress, disturbances in energy metabolism, and the oxidation and nitrosylation of cellular macromolecules are recognized as triggers for neuronal cell death. Challenges in managing and treating neurodegenerative diseases require a better understanding of this field at the molecular level. Therefore, this review elaborates on the molecular mechanisms by which oxidative and nitrosative stress are involved in neuronal apoptosis.
Collapse
Affiliation(s)
- Nuray Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| | - Muhammed Mehdi Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| |
Collapse
|
2
|
Guadalupe Hernández J, Thangarasu P. Chromium Complex of Macrocyclic Ligands as Precursor for Nitric Oxide Release: A Theoretical Study. Chemphyschem 2024; 25:e202400700. [PMID: 39413354 DOI: 10.1002/cphc.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Our research on the chromium complex of macrocyclic ligands as a precursor for nitric oxide release makes a significant contribution to the field of chemistry. We conduct a detailed analysis of nitrito chromium complexes, specifically trans-[M(III)L1-5(ONO)2]+, where M=Cr(III) and L1-L5 represent different ligands such as L1=1,4,8,11-tetraazacyclotetradecane, L2= (5,7-dimethyl-6-benzylcyclam), L3= (5,7-dimethyl-6-anthracylcyclam), L4= (5,7-dimethyl-6-(p-hydroxymethylbenzyl)-1,4, 8,11-cyclam) and L5= (5,7-dimethyl-6-(1¢-methyl-4'-(1"-carboxymethylpyrene) benzyl)-1,4,8,11-tetraazacyclotetradecane). Our objective is to comprehensively understand the mechanism of NO release and identify the key factors influencing NO delivery. The optimized structure of the complexes at spin states S=1/2 or 3/2 indicates a decrease in the Cr(III)-O bond length (1.669-1.671 Å) along with an increase in the Cr(III)O-NO bond length (2.735-2.741 Å), which facilitates the release of NO. Furthermore, there is a significant change in the bond angle (Cr-O-NO), from 120.4° to 116.9°, to S=3/2, thus enlarging the O-NO bond and supporting the β-cleavage of NO from the complex. The calculated activation energy for the complexes reflects the energy difference between the low-spin doublet and high-spin quartet state due to spin crossover (SCO). Moreover, the Natural Transition Orbitals (NTOs) confirm the involvement of a hole-particle in the excitation. Additionally, TD-DFT reveals the pendant chromophore's role in generating NO, as the chromophore antenna effectively enhances light absorption.
Collapse
Affiliation(s)
- José Guadalupe Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México (UNAM), Estado de México, CP 57130, México
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Cd. Universitaria, 04510, México, D.F., México
| |
Collapse
|
3
|
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 2023; 12:antiox12030753. [PMID: 36979000 PMCID: PMC10045816 DOI: 10.3390/antiox12030753] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide, a ubiquitous molecule found throughout the natural world, is a key molecule implicated in many central and benefic molecular pathways and has a well-established role in the function of the central nervous system, as numerous studies have previously shown. Dysregulation of its metabolism, mainly the upregulation of nitric oxide production, has been proposed as a trigger and/or aggravator for many neurological affections. Increasing evidence supports the implication of this molecule in prevalent neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis. The mechanisms proposed for its neurotoxicity mainly center around the increased quantities of nitric oxide that are produced in the brain, their cause, and, most importantly, the pathological metabolic cascades created. These cascades lead to the formation of neuronal toxic substances that impair the neurons' function and structure on multiple levels. The purpose of this review is to present the main causes of increased pathological production, as well as the most important pathophysiological mechanisms triggered by nitric oxide, mechanisms that could help explain a part of the complex picture of neurodegenerative diseases and help develop targeted therapies.
Collapse
Affiliation(s)
- Olga-Maria Iova
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe-Eduard Marin
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Izabella Lazar
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, No. 46-50, 400347 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity. Apoptosis 2018. [PMID: 28643197 DOI: 10.1007/s10495-017-1389-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.
Collapse
|
5
|
Zhang L, Hou S, Li B, Pan J, Jiang L, Zhou G, Gu H, Zhao C, Lu H, Ma F. Combination of betulinic acid with diazen-1-ium-1,2-diolate nitric oxide moiety donating a novel anticancer candidate. Onco Targets Ther 2018; 11:361-373. [PMID: 29391813 PMCID: PMC5774489 DOI: 10.2147/ott.s154412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Betulinic acid (BA) is a complex lupane triterpenoid with unique antineoplastic activity. However, its antiproliferative activity is far from satisfaction. In order to improve its anticancer efficacy, betulinic acid was conjugated with a nitric oxide (NO)-releasing moiety to get a novel hybrid, BA-78. Methods The antiproliferative activity of BA-78 against 6 cell lines and the ability of releasing nitric oxide were determined. The pro-apoptosis mechanism of BA-78 was investigated as well. Results BA-78 exhibited time-dependent release of NO, and it displayed higher antiproliferative potential than BA through increasing apoptosis and inducing cell cycle arrest at G1 phase. Western blotting results showed that BA-78 increased the expression of Bax, Bid, Bad and cytochrome C and reduced the level of anti-apoptosis proteins including Bcl-2 and Bcl-xl. Conclusion Our study revealed that novel compound BA-78, possessing betulinic acid and nitric oxide (NO)-releasing moiety, could be developed as an antitumor agent.
Collapse
Affiliation(s)
- Laiyin Zhang
- Department of Pharmacy, Linyi People's Hospital, Linyi
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
| | - Bo Li
- Department of Hand Surgery, Huashan Hospital, Fudan University
| | - Jianjian Pan
- Department of General Medicine, Fudan University
| | - Liping Jiang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University
| | - Guiying Zhou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
| | - Hong Gu
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| | - Caixing Zhao
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| | - Huiping Lu
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| | - Fenfen Ma
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Novel anticancer oridonin derivatives possessing a diazen-1-ium-1,2-diolate nitric oxide donor moiety: Design, synthesis, biological evaluation and nitric oxide release studies. Bioorg Med Chem Lett 2016; 26:2795-2800. [DOI: 10.1016/j.bmcl.2016.04.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
|
7
|
Thioredoxin/thioredoxin reductase system involvement in cerebellar granule cell apoptosis. Apoptosis 2015; 19:1497-508. [PMID: 25055978 DOI: 10.1007/s10495-014-1023-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The involvement of thioredoxin/thioredoxin reductase system has been investigated in cerebellar granule cells (CGCs), a cellular system in which neurons are induced in apoptosis by the physiological stimulus of lowering extracellular potassium. Clarifying the sequence of events that occur during apoptosis is a critical issue as it can lead to the identification of those key events that, if blocked, can slow down or reverse the death process. The results reported in this work show that TrxR is involved in the early phase of CGC apoptosis with an increase in activity that coincides with the increased expression of the TrxR1 isoform and guarantees the maintenance of adequate level of Trx in its reduced, active form. However, in late apoptosis, when about 50 % of cells are dead, partial proteolysis of TrxR1 by calpain occurs and the reduction of TrxR1 mRNA, together with the overall decrease in TrxR activity, contribute to increase the levels of the oxidized form of Trx. When the reduced form of Trx is externally added to apoptotic cultures, a significant reduction in cell death is achieved confirming that a well-functioning thioredoxin/thioredoxin reductase system is required for survival of CGCs.
Collapse
|
8
|
Gorska M, Kuban-Jankowska A, Zmijewski MA, Gorzynik M, Szkatula M, Wozniak M. Neuronal nitric oxide synthase induction in the antitumorigenic and neurotoxic effects of 2-methoxyestradiol. Molecules 2014; 19:13267-81. [PMID: 25170949 PMCID: PMC6270840 DOI: 10.3390/molecules190913267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE 2-Methoxyestradiol, one of the natural 17β-estradiol derivatives, is a novel, potent anticancer agent currently being evaluated in advanced phases of clinical trials. The main goal of the study was to investigate the anticancer activity of 2-methoxy-estradiol towards osteosarcoma cells and its possible neurodegenerative effects. We used an experimental model of neurotoxicity and anticancer activity of the physiological agent, 2-methoxyestradiol. Thus, we used highly metastatic osteosarcoma 143B and mouse immortalized hippocampal HT22 cell lines. The cells were treated with pharmacological (1 μM, 10 μM) concentrations of 2-methoxyestradiol. EXPERIMENTAL Neuronal nitric oxide synthase and 3-nitrotyrosine protein levels were determined by western blotting. Cell viability and induction of cell death were measured by MTT and PI/Annexin V staining and a DNA fragmentation ELISA kit, respectively. Intracellular levels of nitric oxide were determined by flow cytometry. RESULTS Here we demonstrated that the signaling pathways of neurodegenerative diseases and cancer may overlap. We presented evidence that 2-methoxyestradiol, in contrast to 17β-estradiol, specifically affects neuronal nitric oxide synthase and augments 3-nitrotyrosine level leading to osteosarcoma and immortalized hippocampal cell death. CONCLUSIONS We report the dual facets of 2-methoxyestradiol, that causes cancer cell death, but on the other hand may play a key role as a neurotoxin.
Collapse
Affiliation(s)
- Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland; E-Mails: (A.K.-J.); (M.G.); (M.S.); (M.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-349-14-50; Fax: +48-349-14-56
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland; E-Mails: (A.K.-J.); (M.G.); (M.S.); (M.W.)
| | | | - Monika Gorzynik
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland; E-Mails: (A.K.-J.); (M.G.); (M.S.); (M.W.)
| | - Michal Szkatula
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland; E-Mails: (A.K.-J.); (M.G.); (M.S.); (M.W.)
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland; E-Mails: (A.K.-J.); (M.G.); (M.S.); (M.W.)
| |
Collapse
|
9
|
Yadav R, Samuni Y, Abramson A, Zeltser R, Casap N, Kabiraj TK, L Banach M, Samuni U. Pro-oxidative synergic bactericidal effect of NO: kinetics and inhibition by nitroxides. Free Radic Biol Med 2014; 67:248-54. [PMID: 24140438 DOI: 10.1016/j.freeradbiomed.2013.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
NO plays diverse roles in physiological and pathological processes, occasionally resulting in opposing effects, particularly in cells subjected to oxidative stress. NO mostly protects eukaryotes against oxidative injury, but was demonstrated to kill prokaryotes synergistically with H2O2. This could be a promising therapeutic avenue. However, recent conflicting findings were reported describing dramatic protective activity of NO. The previous studies of NO effects on prokaryotes applied a transient oxidative stress while arbitrarily checking the residual bacterial viability after 30 or 60min and ignoring the process kinetics. If NO-induced synergy and the oxidative stress are time-dependent, the elucidation of the cell killing kinetics is essential, particularly for survival curves exhibiting a "shoulder" sometimes reflecting sublethal damage as in the linear-quadratic survival models. We studied the kinetics of NO synergic effects on H2O2-induced killing of microbial pathogens. A synergic pro-oxidative activity toward gram-negative and gram-positive cells is demonstrated even at sub-μM/min flux of NO. For certain strains, the synergic effect progressively increased with the duration of cell exposure, and the linear-quadratic survival model best fit the observed survival data. In contrast to the failure of SOD to affect the bactericidal process, nitroxide SOD mimics abrogated the pro-oxidative synergy of NO/H2O2. These cell-permeative antioxidants, which hardly react with diamagnetic species and react neither with NO nor with H2O2, can detoxify redox-active transition metals and catalytically remove intracellular superoxide and nitrogen-derived reactive species such as (•)NO2 or peroxynitrite. The possible mechanism underlying the bactericidal NO synergy under oxidative stress and the potential therapeutic gain are discussed.
Collapse
Affiliation(s)
- Reeta Yadav
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Yuval Samuni
- Department of Oral and Maxillofacial Surgery, Barzilai Medical Center, Ashkelon, Israel; School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Alex Abramson
- Department of Oral and Maxillofacial Surgery, Barzilai Medical Center, Ashkelon, Israel
| | - Rephael Zeltser
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Nardi Casap
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Tonmoy K Kabiraj
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Maureen L Banach
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
10
|
Cui W, Zhang ZJ, Hu SQ, Mak SH, Xu DP, Choi CL, Wang YQ, Tsim WK, Lee MY, Rong JH, Han YF. Sunitinib produces neuroprotective effect via inhibiting nitric oxide overproduction. CNS Neurosci Ther 2014; 20:244-52. [PMID: 24393200 DOI: 10.1111/cns.12203] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sunitinib is an inhibitor of the multiple receptor tyrosine kinases (RTKs) for cancer therapy. Some sunitinib analogues could prevent neuronal death induced by various neurotoxins. However, the neuroprotective effects of sunitinib have not been reported. METHODS Cerebellar granule neurons (CGNs) and SH-SY5Y cells were exposed to low-potassium and MPP(+) challenges, respectively. MTT assay, FDA/PI staining, Hoechst staining, DAF-FM, colorimetric nitric oxide synthase (NOS) activity assay, and Western blotting were applied to detect cell viability, NO production, NOS activity, and neuronal NOS (nNOS) expression. Short hairpin RNA was used to decrease nNOS expression. In vitro NOS enzyme activity assay was used to determine the direct inhibition of nNOS by sunitinib. RESULTS Sunitinib prevented low-potassium-induced neuronal apoptosis in CGNs and MPP(+) -induced neuronal death in SH-SY5Y cells. However, PTK787, another RTK inhibitor, failed to decrease neurotoxicity in the same models. Sunitinib reversed the increase in NO levels, NOS activity, and nNOS expression induced by low potassium or MPP(+) . Knockdown of nNOS expression partially abolished the neuroprotective effects of sunitinib. Moreover, sunitinib directly inhibited nNOS enzyme activity. CONCLUSIONS Sunitinib exerts its neuroprotective effects by inhibiting NO overproduction, possibly via the inhibition of nNOS activity and the decrease in nNOS expression.
Collapse
Affiliation(s)
- Wei Cui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The ubiquitous gaseous signaling molecule nitric oxide participates in the regulation of a variety of physiological and pathological processes, including adult neurogenesis. Adult neurogenesis, or the generation of new neurons in the adult brain, is a restricted event confined to areas with neurogenic capability. Although nitric oxide has been shown to mediate conflicting effects on adult neurogenesis, which may be partly explained by its unique characteristics, more studies are required in order to fully comprehend and appreciate the mechanisms involved. Neuropeptide Y, a neurotransmitter shown to be an important regulator of adult hippocampal neurogenesis, acts through intracellular nitric oxide to induce an increase in neural progenitor cell proliferation.
Collapse
|
12
|
Kumar A, Pandey R, Gupta RK, Ghosh K, Pandey DS. Synthesis, characterization and photochemical properties of some ruthenium nitrosyl complexes. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Fry NL, Heilman BJ, Mascharak PK. Dye-Tethered Ruthenium Nitrosyls Containing Planar Dicarboxamide Tetradentate N4 Ligands: Effects of In-Plane Ligand Twist on NO Photolability. Inorg Chem 2010; 50:317-24. [DOI: 10.1021/ic1019873] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nicole L. Fry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Brandon J. Heilman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
14
|
Nitric oxide and neuronal death. Nitric Oxide 2010; 23:153-65. [DOI: 10.1016/j.niox.2010.06.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 12/14/2022]
|
15
|
Oxidation of Biomolecules in the Apoptotic Death of Cerebellar Granule Neurons Induced by Potassium Deprivation. Neurochem Res 2010; 36:677-85. [DOI: 10.1007/s11064-010-0299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
16
|
Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HHHW. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010; 8. [PMID: 20877715 PMCID: PMC2943442 DOI: 10.1371/journal.pbio.1000479] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/28/2010] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
Collapse
Affiliation(s)
- Christoph Kleinschnitz
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
- * E-mail: (HHHWS); (CK)
| | - Henrike Grund
- Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
| | - Kirstin Wingler
- Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
- Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
- Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
- National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia
| | - Melanie E. Armitage
- Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
- National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia
| | - Emma Jones
- Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
| | - Manish Mittal
- Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
| | - David Barit
- Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia
| | - Tobias Schwarz
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
| | - Christian Geis
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
| | - Peter Kraft
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
| | - Konstanze Barthel
- Abteilung Neurologie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Michael K. Schuhmann
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
- Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany
| | - Alexander M. Herrmann
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
- Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany
| | - Sven G. Meuth
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
- Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany
| | - Guido Stoll
- Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
| | - Sabine Meurer
- Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
| | - Anja Schrewe
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Lore Becker
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Karin Jandeleit-Dahm
- Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia
| | - Ajay M. Shah
- King's College London School of Medicine, The James Black Centre, Cardiovascular Division, London, United Kingdom
| | - Norbert Weissmann
- Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
| | - Harald H. H. W. Schmidt
- Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
- Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
- Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
- National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia
- * E-mail: (HHHWS); (CK)
| |
Collapse
|
17
|
Bobba A, Petragallo VA, Marra E, Atlante A. Alzheimer's proteins, oxidative stress, and mitochondrial dysfunction interplay in a neuronal model of Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20862336 PMCID: PMC2939402 DOI: 10.4061/2010/621870] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/24/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022] Open
Abstract
In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT) impairment, due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial function.
Collapse
Affiliation(s)
- Antonella Bobba
- Istituto di Biomembrane e Bioenergetica, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | |
Collapse
|
18
|
Li M, Wang L, Peng Y, Wang JC, Zhou LH. Knockdown of the neuronal nitric oxide synthase gene retard the development of the cerebellar granule neurons in vitro. Dev Dyn 2010; 239:474-81. [PMID: 20014403 DOI: 10.1002/dvdy.22189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The role of endogenous neuronal nitric oxide synthase (nNOS) gene in the development of cerebellar granule neurons (CGNs) is conflicting. Here, we tested the effect of antisense oligos (AS-ODN) on the endogenous nNOS gene and the development of the CGNs in vitro. The expression of nNOS increased in a development-dependent pattern both in terms of mRNA and protein. AS-ODN down-regulated nNOS gene, but in a posttranscriptional manner. Knockdown of nNOS protein decreased the viability of the CGNs from 7 to 13 days in culture (DIC). This activity of AS-ODN was mimicked by nNOS inhibitor I. The antagonist (nNOSi, MK-801, or ODQ) -induced decrease of cell viability was normalized by the provision of the sodium nitroprusside, an NO donor. This study provides direct evidence that endogenous nNOS, mainly by means of its principal product NO, plays an active role in sustaining the survival of developing CGNs at transition from differentiation to maturation.
Collapse
Affiliation(s)
- Mei Li
- Department of Neurology, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | | | | | | | | |
Collapse
|
19
|
Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease. Mol Neurobiol 2010; 41:129-37. [PMID: 20213343 DOI: 10.1007/s12035-010-8104-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca(2+)/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca(2+)/NO/cGMP pathway in aging and Alzheimer's disease.
Collapse
|
20
|
Atlante A, Bobba A, Paventi G, Pizzuto R, Passarella S. Genistein and daidzein prevent low potassium-dependent apoptosis of cerebellar granule cells. Biochem Pharmacol 2009; 79:758-67. [PMID: 19822130 DOI: 10.1016/j.bcp.2009.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/29/2009] [Accepted: 10/06/2009] [Indexed: 01/14/2023]
Abstract
We have investigated the ability of certain dietary flavonoids, known to exert beneficial effects on the central nervous system, to affect neuronal apoptosis. We used cerebellar granule cells undergoing apoptosis due to potassium deprivation in a serum-free medium in either the absence or presence of the flavonoids genistein and daidzein, which are present in soy, and of catechin and epicatechin, which are present in cocoa. These compounds were used in a blood dietary concentration range. We found that genistein and daidzein, but not catechin and epicatechin, prevented apoptosis, with cell survival measured 24h after the induction of apoptosis being higher than that of the same cells incubated in flavonoid free medium (80% and 40%, respectively); there was no effect in control cells. A detailed investigation of the effect of these compounds on certain mitochondrial events that occur in cells en route to apoptosis showed that genistein and daidzein prevented the impairment of glucose oxidation and mitochondrial coupling, reduced cytochrome c release, and prevented both impairment of the adenine nucleotide translocator and opening of the mitochondrial permeability transition pore. Interestingly, genistein and daidzein were found to reduce the levels of reactive oxygen species, which are elevated in cerebellar granule cell apoptosis. These findings strongly suggest that the prevention of apoptosis depends mainly on the antioxidant properties of genistein and daidzein. This could lead to the development of a flavonoid-based therapy in neuropathies.
Collapse
Affiliation(s)
- Anna Atlante
- Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
21
|
Rose MJ, Mascharak PK. Photosensitization of Ruthenium Nitrosyls to Red Light with an Isoelectronic Series of Heavy-Atom Chromophores: Experimental and Density Functional Theory Studies on the Effects of O-, S- and Se-Substituted Coordinated Dyes. Inorg Chem 2009; 48:6904-17. [DOI: 10.1021/ic900899j] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
22
|
Rose MJ, Fry NL, Marlow R, Hinck L, Mascharak PK. Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J Am Chem Soc 2008; 130:8834-46. [PMID: 18597437 DOI: 10.1021/ja801823f] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three nitrosyl-dye conjugates, namely, [(Me 2bpb)Ru(NO)(Resf)] ( 1-Resf), [(Me 2bQb)Ru(NO)(Resf)] ( 2-Resf), and [((OMe) 2bQb)Ru(NO)(Resf)] ( 3-Resf) have been synthesized via direct replacement of the chloride ligand of the parent {Ru-NO} (6) nitrosyls of the type [(R 2byb)Ru(NO)(L)] with the anionic tricyclic dye resorufin (Resf). The structures of 1-Resf- 3-Resf have been determined by X-ray crystallography. The dye is coordinated to the ruthenium centers of these conjugates via the phenolato-O atom and is trans to NO. Systematic red shift of the d pi(Ru) --> pi*(NO) transition of the parent nitrosyls [(R 2byb)Ru(NO)(L)] due to changes in R and y in the equatorial tetradentate ligand R 2byb (2-) results in its eventual merge with the intense absorption band of the dye around 500 nm in 3-Resf. Unlike the UV-sensitive parent [(R 2byb)Ru(NO)(L)] nitrosyls, these dye-sensitized nitrosyls rapidly release NO when exposed to visible light (lambda >/= 465 nm). Comparison of the photochemical parameters reveals that direct coordination of the light-harvesting chromophore to the ruthenium center in the present nitrosyls results in a significantly greater extent of sensitization to visible light compared to nitrosyls with appended chromophore (linked via alkyl chains). 1-Resf has been employed as a "trackable" NO donor to promote NO-induced apoptosis in MDA-MB-231 human breast cancer cells under the control of light. The results of this work demonstrate that (a) the d pi(Ru) --> pi*(NO) transition (photoband) of {Ru-NO} (6) nitrosyls can be tuned into visible range via careful alteration of the ligand frame(s) and (b) such nitrosyls can be significantly sensitized to visible light by directly ligating a light-harvesting chromophore to the ruthenium center. The potential of these photosensitive nitrosyl-dye conjugates as (i) biological tools to study the effects of NO in cellular environments and (ii) "trackable" NO donors in photodynamic therapy of malignancies (such as skin cancer) has been discussed.
Collapse
Affiliation(s)
- Michael J Rose
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
| | | | | | | | | |
Collapse
|
23
|
Nematbakhsh M, Haghjooyjavanmard S, Mahmoodi F, Monajemi AR. The prevention of endothelial dysfunction through endothelial cell apoptosis inhibition in a hypercholesterolemic rabbit model: the effect of L-arginine supplementation. Lipids Health Dis 2008; 7:27. [PMID: 18673573 PMCID: PMC2533308 DOI: 10.1186/1476-511x-7-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/02/2008] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The impact of L-arginine on atherogenesis and its ability to prevent endothelial dysfunction have been studied extensively during the past years. L-arginine is a substance for nitric oxide synthesis which involves in apoptosis. Hypercholesterolemia promotes endothelial dysfunction, and it is hypothesized that L-arginine prevents endothelial dysfunction through endothelial cells apoptosis inhibition. To test this hypothesis, thirty rabbits were assigned into two groups. The control group received 1% cholesterol diet for 4 weeks, and the L-arginine group received same diets plus 3% L-arginine in drinking water. RESULTS No significant differences were observed in cholesterol level between two groups, but the nitrite concentration in L-arginine group was significantly higher than other group (control group: 11.8 +/- 1; L-arginine group: 14.7 +/- 0.5 micromol/l); (p < 0.05). The aorta score of fatty streak in control group was 0.875 +/- 0.35, but no fatty streak lesion was detected in L-arginine group (p < 0.05). The number of intimal apoptotic cells/500 cells of aorta in two groups of experiment were statistically different (control group: 39.3 +/- 7.6; L-arginine group: 21.5 +/- 5.3) (p < 0.05). CONCLUSION The inhibition of endothelial cells apoptosis by L-arginine restores endothelial function in a model of hypercholesterolemia.
Collapse
Affiliation(s)
- Mehdi Nematbakhsh
- Deparment of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | |
Collapse
|
24
|
Konya D, Liao WL, Choi H, Yu D, Woodard MC, Newton KM, King AM, Pamir NM, Black PM, Frontera WR, Sabharwal S, Teng YD. Functional recovery in T13–L1 hemisected rats resulting from peripheral nerve rerouting: role of central neuroplasticity. Regen Med 2008; 3:309-27. [DOI: 10.2217/17460751.3.3.309] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Functional improvements after spinal cord injury (SCI) have been reported anecdotally following neurotization, in other words, rerouting nerves proximal to injured cord segments to distal neuromuscular targets, although the underlying mechanisms remain largely unknown. Aim: To test our hypothesis that neurotization-mediated recovery is primarily attributable to CNS neuroplasticity that therefore manifests optimal response during particular therapeutic windows, we anastomosed the T12 intercostal nerve to the ipsilateral L3 nerve root 1–4 weeks after T13–L1 midline hemisection in rats. Results: While axonal tracing and electromyography revealed limited reinnervation in the target muscles, neurobehavioral function, as assessed by locomotion, extensor postural thrust and sciatic functional index of SCI rats receiving neurotization 7–10 days postinjury (n = 11), recovered to levels close to non-SCI controls with neurotization only (n = 3), beginning 3–5 weeks postanastomosis. Conversely, hindlimb deficits were unchanged in hemisected controls with sham neurotization (n = 7) or 4 weeks-delayed neurotization (n = 3) and in rats that had undergone T13–L1 transection plus bilateral anastomoses (n = 6). Conclusion: Neurotized SCI animals demonstrated multiparameters of neural reorganization in the distal lumbar cord, including enhanced proliferation of endogenous neural stem cells, increased immunoreactivity of serotonin and synaptophysin, and neurite growth/sprouting, suggesting that anastomosing functional nerves with the nerve stump emerging distal to the hemisection stimulates neuroplasticity in the dysfunctional spinal cord. Our conclusion is validated by the fact that severance of the T13–L1 contralateral cord abolished the postanastomosis functional recovery. Neurotization and its neuroplastic sequelae need to be explored further to optimize clinical strategies of post-SCI functional repair.
Collapse
Affiliation(s)
- Deniz Konya
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurosurgery, Marmara University, Istanbul, Turkey
| | - Wei-Lee Liao
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | - Howard Choi
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | - Dou Yu
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Matthew C Woodard
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Kimberly M Newton
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Allyson M King
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | | | - Peter M Black
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Walter R Frontera
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Sunil Sabharwal
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | - Yang D Teng
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| |
Collapse
|
25
|
Rose MJ, Mascharak PK. A photosensitive {Ru–NO}6 nitrosyl bearing dansyl chromophore: novel NO donor with a fluorometric on/off switch. Chem Commun (Camb) 2008:3933-5. [DOI: 10.1039/b805332d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|