1
|
Tian ZY, Xie SQ, Mei ZH, Zhao J, Gao WY, Wang CJ. Expression of Concern: Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway. Org Biomol Chem 2024; 22:2677. [PMID: 38477554 DOI: 10.1039/d4ob90031f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Expression of Concern for 'Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway' by Zhi-Yong Tian et al., Org. Biomol. Chem., 2009, 7, 4651-4660, https://doi.org/10.1039/B912685F.
Collapse
Affiliation(s)
- Zhi-Yong Tian
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475001, China.
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Song-Qiang Xie
- College of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Zi-Hou Mei
- Chemistry Department, Henan University, Kaifeng, 475001, China
| | - Jin Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475001, China.
| | - Wen-Yuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Chao-Jie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
2
|
Design, Synthesis, and Evaluation of Novel 3-Carboranyl-1,8-Naphthalimide Derivatives as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22052772. [PMID: 33803403 PMCID: PMC7967199 DOI: 10.3390/ijms22052772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2′-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure–activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure–activity relationship modeling of the carborane–naphthalimide conjugates.
Collapse
|
3
|
Xie SQ, Li Q, Zhang YH, Wang JH, Mei ZH, Zhao J, Wang CJ. Retraction Note to: NPC-16, a novel naphthalimide-polyamine conjugate, induced apoptosis and autophagy in human hepatoma HepG2 cells and Bel-7402 cells. Apoptosis 2021; 26:1. [PMID: 33532903 DOI: 10.1007/s10495-021-01658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Song-Qiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng, 475004, China
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Ya-Hong Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Jian-Hong Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Zi-Hou Mei
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Jin Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Chao-Jie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
5
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
6
|
Jana P, Ghosh S, Sarkar K. Low molecular weight polyethyleneimine conjugated guar gum for targeted gene delivery to triple negative breast cancer. Int J Biol Macromol 2020; 161:1149-1160. [PMID: 32553957 DOI: 10.1016/j.ijbiomac.2020.06.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
The study emphasized on the development of an efficient, receptor-targeted non-viral gene delivery vehicle for gene therapy of triple negative breast cancer (TNBC). Here, naturally abundant guar gum based non-viral carrier was developed through conjugating by low molecular weight polyethylenimine (LPEI) (GNP) using napthalic anhydride coupling agent and characterized them by FT-IR, 1H NMR, XRD and UV spectrophotometer. The carrier was found to be cytocompatible as revealed by MTT assay against MDA-MB-231 and HeLa cell lines and excellent blood compatibility till the concentration of 200 μg/ml. In addition to these, the carrier exhibited excellent gene binding capability and formed spherical shaped complexes. The carrier showed very high in vitro transfection efficiency in TNBC cell (MDA-MB-231) compared to lipofectamine 2000 (LF2k) which could be justified by its high buffering capacity. Therefore, GNP may be an attractive non-viral gene carrier for gene therapy of TNBC in future.
Collapse
Affiliation(s)
- Piyali Jana
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Santanu Ghosh
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
7
|
Gao L, Ge C, Wang S, Xu X, Feng Y, Li X, Wang C, Wang Y, Dai F, Xie S. The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative. Cancers (Basel) 2020; 12:cancers12030528. [PMID: 32106543 PMCID: PMC7139676 DOI: 10.3390/cancers12030528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. This current study aims to investigate the effects of 9F on CRC and determine its molecular mechanisms of action. Our findings demonstrate that 9F inhibits CRC cell growth by inducing apoptosis and cell cycle arrest, and suppresses migration, invasion and angiogenesis in vitro, resulting in the inhibition of tumor growth and metastasis in vivo. Based on RNA-seq data, further bioinformatic analyses suggest that 9F exerts its anticancer activities through p53 signaling, which is responsible for the altered expression of key regulators of the cell cycle, apoptosis, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. In addition, 9F is more effective than amonafide against CRC. These results show that 9F can be considered as a potential strategy for CRC treatment.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaochao Ge
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Senzhen Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xiaojuan Xu
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
| | - Yongli Feng
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xinna Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China;
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| | - Songqiang Xie
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| |
Collapse
|
8
|
Nekvinda J, Różycka D, Rykowski S, Wyszko E, Fedoruk-Wyszomirska A, Gurda D, Orlicka-Płocka M, Giel-Pietraszuk M, Kiliszek A, Rypniewski W, Bachorz R, Wojcieszak J, Grüner B, Olejniczak AB. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorg Chem 2019; 94:103432. [PMID: 31776032 DOI: 10.1016/j.bioorg.2019.103432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 12/27/2022]
Abstract
The development of 1,8-naphthalimide derivatives as DNA-targeting anticancer agents is a rapidly growing area and has resulted in several derivatives entering into clinical trials. One of original recent developments is the use of boron clusters: carboranes and metallacarboranes in the design of pharmacologically active molecules. In this direction several naphthalimide-carborane and metallacarborane conjugates were synthesized in the present study. Their effect on a cancer cell line - cytotoxicity, type of cell death, cell cycle, and ROS production were investigated. The tested conjugates revealed different activities than the leading members of the naphthalimides family, namely mitonafide and pinafide. These derivatives could induce G0/G1 arrest and promote mainly apoptosis in HepG2 cell line. Our investigations demonstrated that the most promising molecule is N-{[2-(3,3'-commo-bis(1,2-dicarba-3-cobalta(III)-closo-dodecaborate-1-yl)ethyl]-1'-aminoethyl)}-1,8-naphthalimide] (17). It was shown that 17 exhibited cytotoxicity against HepG2 cells, activated cell apoptosis, and caused cell cycle arrest in HepG2 cells. Further investigations in HepG2 cells revealed that compound 17 can also induce ROS generation, particularly mitochondrial ROS (mtROS), which was also proved by increased 8-oxo-dG level in DNA. Additionally to biological assays the interaction of the new compounds with ct-DNA was studied by CD spectra and melting temperature, thus demonstrating that these compounds were rather weak classical DNA intercalators.
Collapse
Affiliation(s)
- Jan Nekvinda
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic; Department of Organic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, 128 42 Prague 2, Czech Republic
| | - Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland.
| | | | - Dorota Gurda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Marta Orlicka-Płocka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Rafał Bachorz
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| | - Bohumir Grüner
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Agnieszka B Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland.
| |
Collapse
|
9
|
Li HH, Song XX, Liu B, Yang WP. UNBS5162 as a novel naphthalimide holds efficacy in human gastric carcinoma cell behaviors mediated by AKT/ERK signaling pathway. Drug Dev Ind Pharm 2019; 45:1306-1312. [PMID: 30995142 DOI: 10.1080/03639045.2019.1607870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: Studies have determined that UNBS5162, recognized as a new naphthalimide, holds inhibitory effects in prostate and breast tumors; however, its functional implication on gastric carcinoma is currently undetermined. Based on this, this study designed to assess the functional role of it on human gastric carcinoma and underlying mechanism of action. Methods: Cell counting kit-8 (CCK-8) assay, transwell assay, and flow cytometry were used to assess capabilities of SGC-7901 cell proliferation, invasion/migration, and apoptosis, respectively. Moreover, western blot was performed to determine the relative expression of protein related to autophagy and protein kinase B (AKT)/extracellular regulated protein kinases (ERK) signaling pathway. Results: We found SGC-7901 cells proliferation, invasion, and migration were significantly inhibited after treatment of UNBS5162. Moreover, the expression levels of anti-apoptotic protein Bcl-2 decreased while the expression of pro-apoptotic protein active caspase 3 and Bax increased concurrently after UNBS5162 stimulation. Further, upregulated LC3 II/I and Beclin-1 and downregulated P62 were induced by UNBS5162 addition. Mechanically, the ratios of phosphorylated-(p-)AKT/AKT, p-mammalian target of rapamycin (mTOR)/mTOR, and p-ERK/ERK were hampered by UNBS5162 application. Conclusion: UNBS5162 could restrain gastric carcinoma cell proliferation, invasion, and migration, which maybe induced by enhancement of apoptosis, autophagy manipulated through AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Hong-Hai Li
- a Department of General Surgery , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| | - Xian-Xu Song
- a Department of General Surgery , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| | - Bo Liu
- a Department of General Surgery , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| | - Wen-Ping Yang
- b Department of Medical Records Management , The Second Affiliated Hospital of Mudanjiang Medical University , Mudanjiang , China
| |
Collapse
|
10
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
11
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
12
|
Han H, Zhou H, Li J, Feng X, Zou D, Zhou W. TRAIL DR5-CTSB crosstalk participates in breast cancer autophagy initiated by SAHA. Cell Death Discov 2017; 3:17052. [PMID: 29018571 PMCID: PMC5629629 DOI: 10.1038/cddiscovery.2017.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 01/03/2023] Open
Abstract
To investigate the ability of SAHA-induced TRAIL DR5-CTSB crosstalk to initiate the breast cancer autophagy, RTCA assay was performed to assess the effect of SAHA on breast cancer cells, and western blot and ELISA were used to verify the inductive effects on expression of CTSB. Breast cancer cells were transfected with TRAIL DR5 siRNA to block the function of TRAIL DR5. Cell viability and apoptosis of breast cancer cells were analyzed using a muse cell analyzer. The distribution of LC3-II in TRAIL DR5-silenced breast cancer cells treated with SAHA was observed by immunofluorescence microscopy, the mRNA levels of autophagy-related genes were detected by RNA microarray, and the activity of autophagy-related signaling pathways was screened by MAPK antibody array. Results indicated that SAHA did indeed repress the growth of breast cancer cell lines with inducing CTSB expression. Western blot and ELISA results indicated that TRAIL DR5 was involved in the expression of CTSB in SAHA-induced breast cancer cells. Cell viability and apoptosis assays showed that the inactivation of TRAIL DR5 can significantly inhibit the effects of SAHA. An immunofluorescence assay indicated that, with SAHA treatment, MDA-MB-231 and MCF-7 cells underwent apparent morphological changes. While SAHA was added in the TRAIL-DR5 blocked cells, the distribution of LC3-II signal was dispersed, the intensity of fluorescence signal was weaker than that of SAHA alone. RNA array indicated that SAHA significantly increased mRNA expression of autophagy marker LC3A/B whereas the change was significantly reversed in TRAIL DR5-silenced cells. The results of MAPK antibody array showed that SAHA and TRAIL DR5 could affect the activity of AKT1, AKT2, and TOR protein in breast cancer cells. These results provide more evidence that SAHA may stimulate TRAIL DR5-CTSB crosstalk, influence the activity of downstream TOR signalling pathway mainly through the AKTs pathway, and initiate the autophagy of breast cancer cells.
Collapse
Affiliation(s)
- Han Han
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Hui Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Jing Li
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Xiuyan Feng
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Dan Zou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| |
Collapse
|
13
|
He W, Roh E, Yao K, Liu K, Meng X, Liu F, Wang P, Bode AM, Dong Z. Targeting ornithine decarboxylase (ODC) inhibits esophageal squamous cell carcinoma progression. NPJ Precis Oncol 2017; 1:13. [PMID: 29872701 PMCID: PMC5859467 DOI: 10.1038/s41698-017-0014-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
To explore the function of ornithine decarboxylase in esophageal squamous cell carcinoma progression and test the effectiveness of anti-ornithine decarboxylase therapy for esophageal squamous cell carcinoma. In this study, we examined the expression pattern of ornithine decarboxylase in esophageal squamous cell carcinoma cell lines and tissues using immunohistochemistry and Western blot analysis. Then we investigated the function of ornithine decarboxylase in ESCC cells by using shRNA and an irreversible inhibitor of ornithine decarboxylase, difluoromethylornithine. To gather more supporting pre-clinical data, a human esophageal squamous cell carcinoma patient-derived xenograft mouse model (C.B-17 severe combined immunodeficient mice) was used to determine the antitumor effects of difluoromethylornithine in vivo. Our data showed that the expression of the ornithine decarboxylase protein is increased in esophageal squamous cell carcinoma tissues compared with esophagitis or normal adjacent tissues. Polyamine depletion by ODC shRNA not only arrests esophageal squamous cell carcinoma cells in the G2/M phase, but also induces apoptosis, which further suppresses esophageal squamous cell carcinoma cell tumorigenesis. Difluoromethylornithine treatment decreases proliferation and also induces apoptosis of esophageal squamous cell carcinoma cells and implanted tumors, resulting in significant reduction in the size and weight of tumors. The results of this study indicate that ornithine decarboxylase is a promising target for esophageal squamous cell carcinoma therapy and difluoromethylornithine warrants further study in clinical trials to test its effectiveness against esophageal squamous cell carcinoma. Blocking an enzyme involved in the cellular synthesis of essential compounds called polyamines could help treat esophageal cancer. Zigang Dong from the University of Minnesota’s Hormel Institute, USA, and colleagues showed that this enzyme, called ornithine decarboxylase (ODC), is expressed at elevated levels in tumor tissues taken from patients with esophageal squamous cell carcinoma. The researchers blocked ODC activity in esophageal cancer cells using either RNA interference techniques or a drug called difluoromethylornithine (DFMO). In both cases, the treatment suppressed further growth and induced cell death. DFMO treatment also reduced the size and weight of tumors in mice implanted with human patient-derived esophageal cancer tissue. The findings point DFMO, which is already used as a medication to treat African sleeping sickness and excessive hair growth, as a potential therapy for cancer patients.
Collapse
Affiliation(s)
- Wei He
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA.,2The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China.,3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Eunmiri Roh
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ke Yao
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Kangdong Liu
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Xing Meng
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Fangfang Liu
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Penglei Wang
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Ann M Bode
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Zigang Dong
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA.,3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| |
Collapse
|
14
|
Ge C, Chang L, Zhao Y, Chang C, Xu X, He H, Wang Y, Dai F, Xie S, Wang C. Design, Synthesis and Evaluation of Naphthalimide Derivatives as Potential Anticancer Agents for Hepatocellular Carcinoma. Molecules 2017; 22:molecules22020342. [PMID: 28241441 PMCID: PMC6155709 DOI: 10.3390/molecules22020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
Two kinds of naphthalimide derivatives were synthesized and evaluated for in vitro their anti-hepatocellular carcinoma properties. Compound 3a with a fused thiazole fragment to naphthalimide skeleton inhibited cell migration of SMMC-7721 and HepG2, and further in vivo trials with two animal models confirmed that compound 3a moderately inhibited primary H22 tumor growth (52.6%) and potently interrupted lung metastasis (75.7%) without obvious systemic toxicity at the therapeutic dose. Mechanistic research revealed that compound 3a inhibited cancerous liver cell growth mostly by inducing G2/M phase arrest. Western blotting experiments corroborated that 3a could up-regulate the cell cycle related protein expression of cyclin B1, CDK1 and p21, and inhibit cell migration by elevating the E-cadherin and attenuating integrin α6 expression. Our study showed that compound 3a is a valuable lead compound worthy of further investigation.
Collapse
Affiliation(s)
- Chaochao Ge
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Liping Chang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Ying Zhao
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Congcong Chang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Xiaojuan Xu
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Haoying He
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, China.
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| | - Songqiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng 475001, China.
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475001, China.
| |
Collapse
|
15
|
Dai F, Li Q, Wang Y, Ge C, Feng C, Xie S, He H, Xu X, Wang C. Design, Synthesis, and Biological Evaluation of Mitochondria-Targeted Flavone–Naphthalimide–Polyamine Conjugates with Antimetastatic Activity. J Med Chem 2017; 60:2071-2083. [DOI: 10.1021/acs.jmedchem.6b01846] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fujun Dai
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Qian Li
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Yuxia Wang
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chaochao Ge
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chenyang Feng
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Songqiang Xie
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Haoying He
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Xiaojuan Xu
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| | - Chaojie Wang
- Key
Laboratory of Natural Medicine and Immuno-Engineering, ‡College of Chemistry
and Chemical Engineering, and §Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China
| |
Collapse
|
16
|
Wang Y, Zhang J, Li M, Li M, Xie S, Wang C. Synthesis and evaluation of novel amonafide-polyamine conjugates as anticancer agents. Chem Biol Drug Des 2016; 89:670-680. [DOI: 10.1111/cbdd.12888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Yuxia Wang
- College of Chemistry and Chemical Engineering; Henan University; Kaifeng China
| | | | - Meng Li
- Pharmaceutical College; Henan University; Kaifeng China
| | - Ming Li
- Pharmaceutical College; Henan University; Kaifeng China
| | - Songqiang Xie
- Pharmaceutical College; Henan University; Kaifeng China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| |
Collapse
|
17
|
Gupta ED, Pachauri M, Ghosh PC, Rajam MV. Targeting polyamine biosynthetic pathway through RNAi causes the abrogation of MCF 7 breast cancer cell line. Tumour Biol 2015; 37:1159-71. [DOI: 10.1007/s13277-015-3912-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
|
18
|
Xing W, Song W, Xu ZF, Song YH. Effect of lupeol on proliferation and apoptosis of hepatic carcinoma SMMC-7721 cells. Shijie Huaren Xiaohua Zazhi 2015; 23:1411-1419. [DOI: 10.11569/wcjd.v23.i9.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of lupeol on the growth and apoptosis of hepatic carcinoma SMMC-7721 cells and explore the mechanism involved.
METHODS: After SMMC-7721 cells were treated by different concentrations of lupeol (0, 2, 5, 10, 20 µg/mL) for different durations (24, 36 or 48 h), cell proliferation was determined by MTT assay. The SMMC-7721 cells were also tested by flow cytometry after treatment with different concentrations of lupeol for 48 h. The expression of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in SMMC-7721 cells was tested by Western blot. Xenograft tumors of SMMC-7721 grown in nude mice were tested by immunohistochemistry to assess the microvessel density (MVD) and the effect of lupeol on angiogenesis.
RESULTS: Compared with the control group, the proliferation of SMMC-7721 cells was inhibited by lupeol in a time and concentration dependent manner. The cell cycle of SMMC-7721 cells was blocked at G0/G1 by lupeol. Lupeol also resulted in apoptosis. Lupeol up-regulated the expression of PCNA and Bcl-2, down-regulated the expression of Bax (P < 0.05), and decreased MVD (P < 0.01).
CONCLUSION: Lupeol can inhibit SMMC-7721 cell proliferation and induce cell apoptosis.
Collapse
|
19
|
Zhang Y, Zheng K, Yan H, Jin G, Shao C, Zhou X, Zhou Y, He T. Growth inhibition and apoptosis induced by 6-fluoro-3-formylchromone in hepatocellular carcinoma. BMC Gastroenterol 2014; 14:62. [PMID: 24708487 PMCID: PMC4005831 DOI: 10.1186/1471-230x-14-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/19/2014] [Indexed: 11/17/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in human population. The 6-fluoro-3-formylchromone (FCC) has been shown to have anti-tumor activity against various tumor cells. However, the effects of FCC on HCC cell lines have not yet been reported. This study aims to research the effects of FCC on HCC and advance the understanding of the molecular mechanism. Methods HCC cell line SMMC-7721 was treated with FCC at various concentrations (0, 2, 5, 10, and 20 μg/ml) for 24, 48 and 72 h, respectively. The proliferations of SMMC-7721 cells were measured by MTT assays. After cultured 24 hours, cell cycle distribution and apoptosis were determined by flow cytometry. However, the expression levels of PCNA, Bax and Bcl-2 were measured by western blotting after 48 hours. Results FCC displayed a dose- and time-dependent inhibition of the SMMC-7721 cell proliferations in vitro. It also induced apoptosis with 45.4% and caused cell accumulation in G0/G1 phase with 21.5%. PCNA and Bcl-2 expression was significantly suppressed by FCC in a dose-dependent manner (P < 0.05), while Bax expression was increased. Conclusions FCC could significantly inhibit HCC cell growth in vitro through cell cycle arrest and inducing apoptosis by suppressing PCNA expression and modulating the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianlin He
- Department of General Surgery, Changhai Hospital, No,168 Changhai Road, Shanghai, Yangpu District 200433, China.
| |
Collapse
|
20
|
Chen L, Kang QH, Chen Y, Zhang YH, Li Q, Xie SQ, Wang CJ. Distinct roles of Akt1 in regulating proliferation, migration and invasion in HepG2 and HCT 116 cells. Oncol Rep 2013; 31:737-44. [PMID: 24297510 DOI: 10.3892/or.2013.2879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/18/2013] [Indexed: 11/05/2022] Open
Abstract
Elucidating the effects of genes involved in tumors may improve therapeutic strategies for human cancer. Recently, several studies discovered that Akt1 plays a dual role in mediating cell proliferation, migration and invasion, depending on the cell type. However, the pathophysiological role of Akt1 in hepatocellular carcinoma (HCC) and colorectal carcinoma cells remains poorly understood. In the present study, we transfected the Akt1-expressing plasmids into the tumor cells that expressed only low levels of Akt1. The migration and invasion abilities were analyzed in 24-well Boyden chambers. The expression of proteins was detected using western blot analysis. Our results demonstrated that overexpression of Akt1 significantly enhanced the proliferation rates and promoted the colony formation in both HepG2 and HCT 116 cells. When treated with wortmannin, the ability to form colonies was significantly attenuated in both cell lines. Of note, enforced expression of Akt1 induced HepG2 cell migration and invasion; by contrast, upregulation of Akt1 expression suppressed the migration and invasion of HCT 116 cells. Subsequent mechanistic investigations revealed that upregulation of Akt1 markedly induced the expression of Bcl-2 and NF-κB in both types of tumor cells. Notably, we observed a similar increase of MMP2, MMP9, HIF1α and VEGF in HCC cells, whereas Akt1 significantly suppressed the expression of these molecules in colorectal carcinoma cells. These data suggest a dual role for Akt1 in tumor cell migration and invasion and highlight the cell type-specific actions of Akt1 kinases in the regulation of cell motility.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Chemical Biology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Qiao-Hui Kang
- Institute of Chemical Biology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ying Chen
- Institute of Chemical Biology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya-Hong Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Song-Qiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao-Jie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
21
|
Zhou Z, Zhang D, Yang L, Ma P, Si Y, Kortz U, Niu J, Wang J. Nona-copper(II)-containing 18-tungsto-8-arsenate(III) exhibits antitumor activity. Chem Commun (Camb) 2013; 49:5189-91. [PMID: 23628910 DOI: 10.1039/c3cc41628c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nona-Cu(II)-containing tungstoarsenate(III) [H4{Cu(II)9As(III)6O15(H2O)6}(α-As(III)W9O33)2](8-) (1a) has been synthesized and characterized. Polyanion 1a comprises a unique, cylindrical {Cu(II)9As(III)6O15(H2O)6}(6+) cluster, which forms a large central cavity and is capped on either end by an [α-As(III)W9O33](9-) capping group. It exhibits remarkable activity against K562 leukaemia cells, as well as induces HepG2 cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Zhen Zhou
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang M, Lu YL, Li MX, Xu XW, Chen L. Synthesis, crystal structures and biological evaluation of 2-benzoylpyridine N(4)-cyclohexylthiosemicarbazone and its binuclear copper(II) complex. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Minarini A, Zini M, Milelli A, Tumiatti V, Marchetti C, Nicolini B, Falconi M, Farruggia G, Cappadone C, Stefanelli C. Synthetic polyamines activating autophagy: effects on cancer cell death. Eur J Med Chem 2013; 67:359-66. [PMID: 23887056 DOI: 10.1016/j.ejmech.2013.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
The ability of symmetrically substituted long chain polymethylene tetramines, methoctramine (1) and its analogs 2-4 to kill cancer cells was studied. We found that an elevated cytotoxicity was correlated with a 12 methylene chain length separating the inner amine functions (6-12-6 carbon backbone), together with the introduction of diphenylethyl moieties on the terminal nitrogen atoms (compound 4) of a tetramine backbone. Compound 4 triggered dissipation of mitochondrial transmembrane potential and increased intracellular peroxide levels, leading to a caspase-independent HeLa cell death associated with a rapid activation of autophagy. The antioxidant N-acetylcysteine inhibited cell death and activation of autophagy, indicating a link between oxidative stress and autophagy. Autophagy was rapidly triggered even by tetramines 2 and 3, indicating that is related to their polyamine structure. Autophagy did not protect HeLa cells against cytotoxicity elicited by compound 4. The present study shows that, by modifications of the methoctramine structure, it is possible to design polyamine derivatives highly cytotoxic against tumor cells and that the appropriate design of molecules bearing polyamine-like structures leads to powerful inducers of autophagy.
Collapse
Affiliation(s)
- Anna Minarini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Maisanaba S, Puerto M, Pichardo S, Jordá M, Moreno FJ, Aucejo S, Jos Á. In vitro toxicological assessment of clays for their use in food packaging applications. Food Chem Toxicol 2013; 57:266-75. [PMID: 23579166 DOI: 10.1016/j.fct.2013.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 02/09/2023]
Abstract
Montmorillonite based clays have a wide range of applications that are going to contribute to increase human exposure to these materials. One of the most promising uses of clays is the development of reinforced food contact materials that results in nanocomposites with improved barrier properties. Different organoclays have been developed introducing modifiers in the natural clay which is commercially available. However, the toxicological aspects of these materials have been scarcely studied so far. In the present study, the cytotoxic effects of a non-modified clay (Cloisite Na+) and an organoclay (Cloisite 30B) have been investigated in the hepatic cell line HepG2. Only Cloisite 30B showed cytotoxicity. In order to elucidate the toxic mechanisms underlying these effects, apoptosis, inflammation, oxidative stress and genotoxicity biomarkers were assayed. Moreover, a morphology study with light and electron microscopy was performed. Results showed genotoxic effects and glutathione decrease. The most relevant ultraestructural alterations observed were mitochondrial degeneration, dilated endomembrane systems, heterophagosomes formation, fat droplets appearance and presence of nuclear lipid inclusions. Cloisite 30B, therefore, induces toxic effects in HepG2 cells. Further research is needed to assess the risk of this clay on the human health.
Collapse
Affiliation(s)
- Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González n°2, 41012 Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochim Biophys Acta Rev Cancer 2013; 1836:15-26. [PMID: 23428608 DOI: 10.1016/j.bbcan.2013.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of autophagy. Among the various biological functions of autophagy identified so far, the link between autophagy and cancer is probably among the most extensively studied and is often viewed as controversial. Autophagy might exert a dual role in cancer development: autophagy can serve as an anti-tumor mechanism, as defective autophagy (e.g., heterozygous knockdown Beclin 1 and Atg7 in mice) promotes the malignant transformation and spontaneous tumors. On the other hand, autophagy functions as a protective or survival mechanism in cancer cells against cellular stress (e.g., nutrient deprivation, hypoxia and DNA damage) and hence promotes tumorigenesis and causes resistance to therapeutic agents. Liver cancer is one of the common cancers with well-established etiological factors including hepatitis virus infection and environmental carcinogens such as aflatoxin and alcohol exposure. In recent years, the involvement of autophagy in liver cancer has been increasingly studied. Here, we aim to provide a systematic review on the close cross-talks between autophagy and liver cancer, and summarize the current status in development of novel liver cancer therapeutic approaches by targeting autophagy. It is believed that understanding the molecular mechanisms underlying the autophagy modulation and liver cancer development may provoke the translational studies that ultimately lead to new therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
26
|
Banerjee S, Veale EB, Phelan CM, Murphy SA, Tocci GM, Gillespie LJ, Frimannsson DO, Kelly JM, Gunnlaugsson T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem Soc Rev 2013; 42:1601-18. [DOI: 10.1039/c2cs35467e] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Antitumor effects and preliminary systemic toxicity of ANISpm in vivo and in vitro. Anticancer Drugs 2013; 24:32-42. [DOI: 10.1097/cad.0b013e328359affd] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Xie SQ, Zhang YH, Li Q, Xu FH, Miao JW, Zhao J, Wang CJ. 3-Nitro-naphthalimide and nitrogen mustard conjugate NNM-25 induces hepatocellular carcinoma apoptosis via PARP-1/p53 pathway. Apoptosis 2012; 17:725-34. [PMID: 22395446 DOI: 10.1007/s10495-012-0712-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the main causes of death in cancer. Some naphthalimide derivatives exert high anti-proliferative effects on HCC. In this study, it is confirmed that 3-nitro-naphthalimide and nitrogen mustard conjugate (NNM-25), a novel compound conjugated by NNM-25, displayed more potent therapeutic action on HCC, both in vivo and in vitro, than amonafide, a naphthalimide drug in clinical trials. More importantly, preliminary toxicological evaluation also supported that NNM-25 exhibited less systemic toxicity than amonafide at the therapeutic dose. The antitumor mechanism of conjugates of naphthalimides with nitrogen mustard remains poorly understood up to now. Here, we first reported that apoptosis might be the terminal fate of cancer cells treated with NNM-25. Inhibition of p53 by siRNA resulted in a significant decrease of NNM-25-induced apoptosis, which corroborated that p53 played a vital role in the cell apoptosis triggered by NNM-25. NNM-25 inhibited the PARP-1 activity, AKT phosphorylation, up-regulated the protein expression of p53, Bad, and mTOR as well as down-regulating the protein expression of Bcl-2 and decreasing mitochondrial membrane potential. It also facilitated cytochrome c release from mitochondria to cytoplasm, activated caspase 8, caspase 9, and caspase 3 in HepG2 cells in vitro, as also authenticated in H22 tumor-bearing mice in vivo. Collectively, the conjugation of naphthalimides with nitrogen mustard provides favorable biological activity and thus is a valuable strategy for future drug design in HCC therapy.
Collapse
Affiliation(s)
- Song-qiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Gamble LD, Hogarty MD, Liu X, Ziegler DS, Marshall G, Norris MD, Haber M. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front Oncol 2012. [PMID: 23181218 PMCID: PMC3499881 DOI: 10.3389/fonc.2012.00162] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas.
Collapse
Affiliation(s)
- Laura D Gamble
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
COX-2-independent induction of apoptosis by celecoxib and polyamine naphthalimide conjugate mediated by polyamine depression in colorectal cancer cell lines. Int J Colorectal Dis 2012; 27:861-8. [PMID: 22159752 DOI: 10.1007/s00384-011-1379-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Polyamine metabolism is an intriguing tumor therapeutic target. The present study was designed to assess the synergistic antitumor effects of NPC-16, a novel polyamine naphthalimide conjugate, with celecoxib and to elucidate the mechanism of these effects on human colorectal cancer cells. METHODS Cell proliferation was assessed by the MTT assay. Cell apoptosis and mitochondria membrane potential were evaluated by high content screening analysis. Intracellular polyamine content was detected by HPLC. Protein expression was detected by western blot analysis. RESULTS The co-treatment with celecoxib enhanced NPC-16-induced apoptosis in HCT116 (COX-2 no expression), HT29 (COX-2 higher expression) and Caco-2 (COX-2 higher expression) colorectal cancer cells, which was mediated by the elevated NPC-16 uptake via the effect of celecoxib on polyamine metabolism, including the up-regulated spermidine/spermine N(1)-acetyltransferase (SSAT) activity and reduced intracellular polyamine levels. The presence of celecoxib does not result in obviously different effect on the NPC-16-triggered apoptosis in diverse COX-2 expressed colorectal cell lines, suggesting that COX-2 was not one vital factor in the apoptotic mechanism. Furthermore, this synergistic apoptosis was involved in the PKB/AKT signal pathway, Bcl-2 and caspase family members. Z-VAD-FMK, a cell permeable pan caspase inhibitor, almost completely inhibited celecoxib and NPC-16 co-induced apoptosis, indicating that this apoptosis was caspase dependent. CONCLUSIONS Co-treatment of celecoxib and NPC-16 could induce colorectal cancer cell apoptosis via COX-2-independent and caspase-dependent mechanisms. The combination therapy with these agents might provide a novel therapeutic model for colorectal cancer.
Collapse
|
31
|
Xie SQ, Li Q, Zhang YH, Li Z, Zhao J, Wang CJ. BND-12, a novel nonhaematotoxic naphthalimide derivative, inhibits tumour growth and metastasis of hepatocellular carcinoma. J Pharm Pharmacol 2012; 64:1483-90. [DOI: 10.1111/j.2042-7158.2012.01519.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Objectives
Naphthalimides have shown potent antitumour activity against a variety of murine and human cancer cells. However, most of them have been abandoned because of a poor therapeutic index and haematotoxicity, such as amonafide. To overcome these disadvantages, many novel naphthalimide derivatives have been designed and synthesized as antitumour agents.
Methods
The cytotoxicity of 6,6-(propane-1,3-diylbis(azanediyl)bis(2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-1-3(2H)-dione) (BND-12) was evaluated using multiparameter cytotoxicity 2 kit by High Content Screening (HCS). The antiproliferative ability of BND-12 was evaluated using MTT assay. BND-12-mediated cell apoptosis was evaluated using HCS. Antitumor effects and systemic toxicity of BND-12 were evaluated in vivo using Kunming male mice.
Key findings
After screening, we found BND-12, a novel naphthalimide derivative, exerted favourable antitumour activity in vitro and in vivo. Our data demonstrated that the cytotoxicity of BND-12 was due to cell apoptosis via the mitochondrial pathway. Interestingly, we demonstrated that BND-12 exerted more potent antitumour activity in subcutaneous xenograft tumour growth, survival time and lung metastasis than amonafide in vivo. Encouragingly, preliminary toxicological evaluation demonstrated that BND-12 had no obvious systemic toxicity at the therapeutic dose, especially haematotoxicity.
Conclusions
BND-12 exerted potent effects against HCC in vivo and in vitro, importantly, it had no obvious systemic toxicity at the therapeutic dose.
Collapse
Affiliation(s)
- Song-qiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng, China
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Ya-hong Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Zhan Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Jin Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Chao-jie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| |
Collapse
|
32
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
33
|
Cytotoxicity and cell death mechanisms induced by the polyamine-vectorized anti-cancer drug F14512 targeting topoisomerase II. Biochem Pharmacol 2011; 82:1843-52. [DOI: 10.1016/j.bcp.2011.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022]
|
34
|
Qi L, Gang L, Hang KW, Ling CH, Xiaofeng Z, Zhen L, Wai YD, Sang PW. Programmed neuronal cell death induced by HIV-1 tat and methamphetamine. Microsc Res Tech 2011; 74:1139-44. [PMID: 21563266 DOI: 10.1002/jemt.21006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 02/10/2011] [Indexed: 11/05/2022]
Abstract
Apoptosis and autophagy are the two major types of programmed cell death (PCD) in neurons. Homeostatic autophagy often precedes apoptosis, and when apoptosis is blocked, the failure to keep homeostasis will lead to necrosis instead. It has been reported that human immunodeficiency virus (HIV) infected methamphetamine (Meth) abusers represent greater neuropathological abnormalities than Meth abusers or HIV-positive non-Meth users. Recent publications suggest that Tat and Meth when administered together result in greater neuronal damage than when administered separately. However, the cellular events of the combined Tat-Meth effect have not yet been fully characterized. Therefore, we investigated the effects of Tat and/or Meth on apoptosis and autophagy to elucidate whether PCD was involved in Tat and/or Meth-induced neuronal damage. Annexin-V-FITC/PI staining assay was used to detect cellular apoptosis using a neuroblastoma cell line SH-SY5Y. Cellular ultrastructural changes were observed under transmission electron microscopy (TEM). Flow-cytometric data showed apoptosis following Meth treatment, and more extensive apoptosis with Tat + Meth treatment. The most important finding was that the autophagosome and/or multilamellar bodies (MLBs) were most pronounced with Tat + Meth treatment, were less so with Meth treatment, and infrequent with Tat treatment. This suggests the involvement of autophagy and apoptosis in Tat with Meth-elicited cell damage. However, the relation between apoptosis and autophagy remains unknown in this experiment. Further research is needed to analyze the relation among related molecules. A thorough understanding of this multifaceted relationship will be critical for the assessment of therapeutic modalities for patients with HIV with drug abuse.
Collapse
Affiliation(s)
- Li Qi
- Department of Psychiatry, University of Hong Kong, 21 Sasson Roads, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | |
Collapse
|