1
|
Protective Effect of Resveratrol against Hypoxia-Induced Neural Oxidative Stress. J Pers Med 2022; 12:jpm12081202. [PMID: 35893296 PMCID: PMC9330416 DOI: 10.3390/jpm12081202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress plays an important role in brain aging and in neurodegenerative diseases. New therapeutic agents are necessary to cross the blood–brain barrier and target disease pathogenesis without causing disagreeable side effects. Resveratrol (RSV) may act as a neuroprotective compound, but little is known about its potential in improving the cognitive and metabolic aspects that are associated with neurodegenerative diseases. The objective of this study was to investigate the protective effects and the underlying mechanisms of RSV against hypoxia-induced oxidative stress in neuronal PC12 cells. For the induction of the hypoxia model, the cells were exposed to oxygen-deprived gas in a hypoxic chamber. Cell cycle and apoptosis were analyzed by a fluorescence activated cell sorting (FACS) analysis. The intracellular reactive oxygen species (ROS) level was analyzed by using dichlorodihydrofluorescein diacetate (DCFDA) and 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) tests. The expression of activated caspase-3, -9, Bcl-2, Bax, p53, and SOD was investigated by a Western blot analysis. We found that hypoxia reduced PC12 viability by inducing apoptosis, while RSV treatment attenuated the ROS-induced damage by reducing caspase-3, -9, and the Bax/Bcl-2 ratio. The RSV treated groups were found to improve cellular health, with a 7.41% increase in the S phase population in the 10 µM group, compared to the control. Hence, RSV has a protective effect in neuronal cells and may halt the cell cycle in the G1/S phase to repair the intracellular damage. Therefore, RSV could be a good candidate to act as an antioxidant and promising preventive therapeutic agent in neurodegenerative diseases for personalized medicine.
Collapse
|
2
|
H9c2 Cardiomyocytes under Hypoxic Stress: Biological Effects Mediated by Sentinel Downstream Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6874146. [PMID: 34630851 PMCID: PMC8497098 DOI: 10.1155/2021/6874146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/13/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
The association between diabetes and cardiovascular diseases is well known. Related diabetes macro- and microangiopathies frequently induce hypoxia and consequently energy failure to satisfy the jeopardized myocardium basal needs. Additionally, it is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity, resulting in diminished nitric oxide (NO) bioavailability and consequent endothelial cell dysfunction. In this study, we analyzed the embryonic heart-derived H9c2 cell response to hypoxic stress after administration of a high glucose concentration to reproduce a condition often observed in diabetes. We observed that 24 h hypoxia exposure of H9c2 cells reduced cell viability compared to cells grown in normoxic conditions. Cytotoxicity and early apoptosis were increased after exposure to high glucose administration. In addition, hypoxia induced a RhoA upregulation and a Bcl-2 downregulation and lowered the ERK activation observed in normoxia at both glucose concentrations. Furthermore, a significant cell proliferation rate increases after the 1400 W iNOS inhibitor administration was observed. Again, hypoxia increased the expression level of myogenin, a marker of skeletal muscle cell differentiation. The cardiomyocyte gene expression profiles and morphology changes observed in response to pathological stimuli, as hypoxia, could lead to improper ventricular remodeling responsible for heart failure. Therefore, understanding cell signaling events that regulate cardiac response to hypoxia could be useful for the discovery of novel therapeutic approaches able to prevent heart diseases.
Collapse
|
3
|
Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, Coppola M, Ferati K, Bexheti-Ferati A, Sciarra A, Nicoletti GF, Ferraro GA, Boccellino M. The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne) 2019; 10:540. [PMID: 31456748 PMCID: PMC6701166 DOI: 10.3389/fendo.2019.00540] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of adipose tissue in the body occurs because the energy introduced with food and drink exceeds that expense, but to understand why this imbalance is established and why it is maintained over time, it is important to consider the main causes and risk factors of excess weight. In this review, we will refer to the main factors linked to obesity, starting from oxidative stress to hormonal factors including the role of obesity in breast cancer. Among the many hypotheses formulated on the etiopathology of obesity, a key role can be attributed to the relationship between stress oxidative and intestinal microbiota. Multiple evidences tend to show that genetic, epigenetic, and lifestyle factors contribute to determine in the obese an imbalance of the redox balance correlated with the alteration of the intestinal microbial flora. Obesity acts negatively on the wound healing, in fact several studies indicate morbid obesity significantly increased the risk of a post-operative wound complication and infection. Currently, in the treatment of obesity, medical interventions are aimed not only at modifying caloric intake, but also to modulate and improve the composition of diet with the aim of rebalancing the microbiota-redox state axis.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Federica Pinto
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuliana Settembre
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mario Coppola
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Kenan Ferati
- Faculty of Medicine, University of Tetovo, Tetovo, Macedonia
| | | | - Antonella Sciarra
- Department of Translational Medicad Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Andrea Ferraro
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
- *Correspondence: Giuseppe Andrea Ferraro
| | | |
Collapse
|