1
|
Ho Shon I, Hogg PJ. Imaging of cell death in malignancy: Targeting pathways or phenotypes? Nucl Med Biol 2023; 124-125:108380. [PMID: 37598518 DOI: 10.1016/j.nucmedbio.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Cell death is fundamental in health and disease and resisting cell death is a hallmark of cancer. Treatment of malignancy aims to cause cancer cell death, however current clinical imaging of treatment response does not specifically image cancer cell death but assesses this indirectly either by changes in tumor size (using x-ray computed tomography) or metabolic activity (using 2-[18F]fluoro-2-deoxy-glucose positron emission tomography). The ability to directly image tumor cell death soon after commencement of therapy would enable personalised response adapted approaches to cancer treatment that is presently not possible with current imaging, which is in many circumstances neither sufficiently accurate nor timely. Several cell death pathways have now been identified and characterised that present multiple potential targets for imaging cell death including externalisation of phosphatidylserine and phosphatidylethanolamine, caspase activation and La autoantigen redistribution. However, targeting one specific cell death pathway carries the risk of not detecting cell death by other pathways and it is now understood that cancer treatment induces cell death by different and sometimes multiple pathways. An alternative approach is targeting the cell death phenotype that is "agnostic" of the death pathway. Cell death phenotypes that have been targeted for cell death imaging include loss of plasma membrane integrity and dissipation of the mitochondrial membrane potential. Targeting the cell death phenotype may have the advantage of being a more sensitive and generalisable approach to cancer cell death imaging. This review describes and summarises the approaches and radiopharmaceuticals investigated for imaging cell death by targeting cell death pathways or cell death phenotype.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Sydney, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, UNSW Sydney, Australia.
| | - Philip J Hogg
- The Centenary Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Nie H, Wang N, Huang J, Ni Z, Xue K, Song L, Wang M, Wu F. Radiosynthesis and tumor microPET/CT imaging of 18F-fluoroethoxylerianin, a 18F-Labeled Erianin Analogue. SYNOPEN 2022. [DOI: 10.1055/a-1818-8330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract: Erianin is an active constituent of Dendrobium candidum. In this work, 18F -fluoroethoxylerianin([18F]FEE), a 18F-Labeled Erianin analogue, was designed and synthesized to evaluate the property of Erianin and related analogues by in vivo PET imaging. The initial product was separated and purified by liquid phase separation module Explora LC and simple homemade solid phase extraction, and high purity [18F]FEE was finally obtained. The radiochemical purity of [18F]FEE was determined by Radio-TLC and Radio-HPLC. [18F]FEE showed good stability in normal saline and serum, and could be quickly eliminated from mice. Cell experiments, biological distribution, and small animal PET/CT further showed that [18F]FEE had a high uptake rate in HepG2 tumor cells, and showed good imaging ability in HepG2 tumor model. The results of this study indicate that the synthesized 18F-Labeled Erianin analogue is an effective new probe for positron emission tomography (PET) imaging of HepG2 hepatocellular carcinoma, which provides an intuitive and reliable theoretical basis for the development of erianin as an anticancer drug.
Collapse
Affiliation(s)
- Hui Nie
- Department of pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Nian Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jinwen Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhuang Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Kangyan Xue
- Department of pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Lixing Song
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, shanghai, China
| |
Collapse
|
3
|
Jouberton E, Schmitt S, Maisonial-Besset A, Chautard E, Penault-Llorca F, Cachin F. Interest and Limits of [18F]ML-10 PET Imaging for Early Detection of Response to Conventional Chemotherapy. Front Oncol 2021; 11:789769. [PMID: 34988022 PMCID: PMC8722713 DOI: 10.3389/fonc.2021.789769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
One of the current challenges in oncology is to develop imaging tools to early detect the response to conventional chemotherapy and adjust treatment strategies when necessary. Several studies evaluating PET imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) as a predictive tool of therapeutic response highlighted its insufficient specificity and sensitivity. The [18F]FDG uptake reflects only tumor metabolic activity and not treatment-induced cell death, which seems to be relevant for therapeutic evaluation. Therefore, to evaluate this parameter in vivo, several cell death radiotracers have been developed in the last years. However, few of them have reached the clinical trials. This systematic review focuses on the use of [18F]ML-10 (2-(5-[18F]fluoropentyl)-2-methylmalonic acid) as radiotracer of apoptosis and especially as a measure of tumor response to treatment. A comprehensive literature review concerning the preclinical and clinical investigations conducted with [18F]ML-10 was performed. The abilities and applications of this radiotracer as well as its clinical relevance and limitations were discussed. Most studies highlighted a good ability of the radiotracer to target apoptotic cells. However, the increase in apoptosis during treatment did not correlate with the radiotracer tumoral uptake, even using more advanced image analysis (voxel-based analysis). [18F]ML-10 PET imaging does not meet current clinical expectations for early detection of the therapeutic response to conventional chemotherapy. This review has pointed out the challenges of applying various apoptosis imaging strategies in clinical trials, the current methodologies available for image analysis and the future of molecular imaging to assess this therapeutic response.
Collapse
Affiliation(s)
- Elodie Jouberton
- Service de Médecine Nucléaire, Centre Jean PERRIN, Clermont-Ferrand, France
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- *Correspondence: Elodie Jouberton,
| | - Sébastien Schmitt
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| | - Aurélie Maisonial-Besset
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Florent Cachin
- Service de Médecine Nucléaire, Centre Jean PERRIN, Clermont-Ferrand, France
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
| |
Collapse
|
4
|
Yuan G, Liu S, Ma H, Su S, Wen F, Tang X, Zhang Z, Zhao J, Lin L, Xiang X, Nie D, Tang G. Targeting Phosphatidylethanolamine with Fluorine-18 Labeled Small Molecule Probe for Apoptosis Imaging. Mol Imaging Biol 2021; 22:914-923. [PMID: 31828718 DOI: 10.1007/s11307-019-01460-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Externalization of phosphatidylethanolamine (PE) in dying cells makes the phospholipid an attractive target for apoptosis imaging. However, no ideal PE-targeted positron emission tomography (PET) radiotracer was developed. The goal of the study was to develop a novel PE-targeted radiopharmaceutical to imaging apoptosis. PROCEDURE In this study, we have radiolabeled PE-binding polypeptide duramycin with fluorine-18 for PET imaging of apoptosis. Al[18F]F-NOTA-PEG3-duramycin was synthesized via chelation reaction of NOTA-PEG3-duramycin with Al[18F]F. PE-binding capacity of Al[18F]F-NOTA-PEG3-duramycin was determined in a competitive radiometric PE-binding assay. The pharmacokinetic profile was evaluated in Kunming mice. The apoptosis imaging capacity of Al[18F]F-NOTA-PEG3-duramycin was evaluated using in vitro cell uptake assay with camptothecin-treated Jurkat cells, along with in vivo PET imaging using erlotinib-treated nude mice. RESULTS The total synthesis procedure lasted for 30 min, with a decay-uncorrected radiochemical yield of 21.3 ± 2.6 % (n = 10). Compared with the control cells, the binding of Al[18F]F-NOTA-PEG3-duramycin with camptothecin-induced apoptotic cells resulted in a tripling increase. A competitive radiometric PE-binding assay strongly confirmed the binding of Al[18F]F-NOTA-PEG3-duramycin to PE. The biodistribution study showed rapid blood clearance, prominent kidney retention, and low liver uptake. In the in vivo PET/CT imaging, Al[18F]F-NOTA-PEG3-duramycin demonstrated 2-fold increase in erlotinib-treated HCC827 tumors in nude mice. CONCLUSION Considering the facile preparation and improved biological properties, Al[18F]F-NOTA-PEG3-duramycin seems to be a promising PET tracer candidate for imaging apoptosis in the monitoring of cancer treatment.
Collapse
Affiliation(s)
- Gongjun Yuan
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Ma
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Su
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fuhua Wen
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaolan Tang
- Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China.,School of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanwen Zhang
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Zhao
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Lin
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianhong Xiang
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ganghua Tang
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China. .,Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Van de Wiele C, Ustmert S, De Spiegeleer B, De Jonghe PJ, Sathekge M, Alex M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. Int J Mol Sci 2021; 22:ijms22052753. [PMID: 33803180 PMCID: PMC7963162 DOI: 10.3390/ijms22052753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
To date, a wide variety of potential PET-apoptosis imaging radiopharmaceuticals targeting apoptosis-induced cell membrane asymmetry and acidification, as well as caspase 3 activation (substrates and inhibitors) have been developed with the purpose of rapidly assessing the response to treatment in cancer patients. Many of these probes were shown to specifically bind to their apoptotic target in vitro and their uptake to be enhanced in the in vivo-xenografted tumours in mice treated by means of chemotherapy, however, to a significantly variable degree. This may, in part, relate to the tumour model used given the fact that different tumour cell lines bear a different sensitivity to a similar chemotherapeutic agent, to differences in the chemotherapeutic concentration and exposure time, as well as to the different timing of imaging performed post-treatment. The best validated cell membrane acidification and caspase 3 targeting radioligands, respectively 18F-ML-10 from the Aposense family and the radiolabelled caspase 3 substrate 18F-CP18, have also been injected in healthy individuals and shown to bear favourable dosimetric and safety characteristics. However, in contrast to, for instance, the 99mTc-HYNIC-Annexin V, neither of both tracers was taken up to a significant degree by the bone marrow in the healthy individuals under study. Removal of white and red blood cells from the bone marrow through apoptosis plays a major role in the maintenance of hematopoietic cell homeostasis. The major apoptotic population in normal bone marrow are immature erythroblasts. While an accurate estimate of the number of immature erythroblasts undergoing apoptosis is not feasible due to their unknown clearance rate, their number is likely substantial given the ineffective quote of the erythropoietic process described in healthy subjects. Thus, the clinical value of both 18F-ML-10 and 18F-CP18 for apoptosis imaging in cancer patients, as suggested by a small number of subsequent clinical phase I/II trials in patients suffering from primary or secondary brain malignancies using 18F-ML-10 and in an ongoing trial in patients suffering from cancer of the ovaries using 18F-CP18, remains to be proven and warrants further investigation.
Collapse
Affiliation(s)
- Christophe Van de Wiele
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-5663-4120
| | - Sezgin Ustmert
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Bart De Spiegeleer
- Department of Analytical Chemistry, DRUQUAR, University Ghent, 9000 Ghent, Belgium;
| | - Pieter-Jan De Jonghe
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0084, South Africa;
| | - Maes Alex
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Morphology and Imaging, University Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
van der Krogt JMA, van Binsbergen WH, van der Laken CJ, Tas SW. Novel positron emission tomography tracers for imaging of rheumatoid arthritis. Autoimmun Rev 2021; 20:102764. [PMID: 33476822 DOI: 10.1016/j.autrev.2021.102764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.
Collapse
Affiliation(s)
- Jeffrey M A van der Krogt
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter H van Binsbergen
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Conny J van der Laken
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
8
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Bao X, Wang MW, Luo JM, Wang SY, Zhang YP, Zhang YJ. Optimization of Early Response Monitoring and Prediction of Cancer Antiangiogenesis Therapy via Noninvasive PET Molecular Imaging Strategies of Multifactorial Bioparameters. Theranostics 2016; 6:2084-2098. [PMID: 27698942 PMCID: PMC5039682 DOI: 10.7150/thno.13917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/30/2016] [Indexed: 12/13/2022] Open
Abstract
Objective: Antiangiogenesis therapy (AAT) has provided substantial benefits regarding improved outcomes and survival for suitable patients in clinical settings. Therefore, the early definition of therapeutic effects is urgently needed to guide cancer AAT. We aimed to optimize the early response monitoring and prediction of AAT efficacy, as indicated by the multi-targeted anti-angiogenic drug sunitinib in U87MG tumors, using noninvasive positron emission computed tomography (PET) molecular imaging strategies of multifactorial bioparameters. Methods: U87MG tumor mice were treated via intragastric injections of sunitinib (80 mg/kg) or vehicle for 7 consecutive days. Longitudinal MicroPET/CT scans with 18F-FDG, 18F-FMISO, 18F-ML-10 and 18F-Alfatide II were acquired to quantitatively measure metabolism, hypoxia, apoptosis and angiogenesis on days 0, 1, 3, 7 and 13 following therapy initiation. Tumor tissues from a dedicated group of mice were collected for immunohistochemical (IHC) analysis of key biomarkers (Glut-1, CA-IX, TUNEL, ανβ3 and CD31) at the time points of PET imaging. The tumor sizes and mouse weights were measured throughout the study. The tumor uptake (ID%/gmax), the ratios of the tumor/muscle (T/M) for each probe, and the tumor growth ratios (TGR) were calculated and used for statistical analyses of the differences and correlations. Results: Sunitinib successfully inhibited U87MG tumor growth with significant differences in the tumor size from day 9 after sunitinib treatment compared with the control group (P < 0.01). The uptakes of 18F-FMISO (reduced hypoxia), 18F-ML-10 (increased apoptosis) and 18F-Alfatide II (decreased angiogenesis) in the tumor lesions significantly changed during the early stage (days 1 to 3) of sunitinib treatment; however, the uptake of 18F-FDG (increased glucose metabolism) was significantly different during the late stage. The PET imaging data of each probe were all confirmed via ex vivo IHC of the relevant biomarkers. Notably, the PET imaging of 18F-Alfatide II and 18F-FMISO was significantly correlated (all P < 0.05) with TGR, whereas the imaging of 18F-FDG and 18F-ML-10 was not significantly correlated with TGR. Conclusion: Based on the tumor uptake of the PET probes and their correlations with MVD and TGR, 18F-Alfatide II PET may not only monitor the early response but also precisely predict the therapeutic efficacy of the multi-targeted, anti-angiogenic drug sunitinib in U87MG tumors. In conclusion, it is feasible to optimize the early response monitoring and efficacy prediction of cancer AAT using noninvasive PET molecular imaging strategies of multifactorial bioparameters, such as angiogenesis imaging with 18F-Alfatide II, which represents an RGD-based probe.
Collapse
|
10
|
Abstract
The Pharmacological Audit Trail (PhAT) comprises a set of critical questions that need to be asked during discovery and development of an anticancer drug. Key aspects include: (1) defining a patient population; (2) establishing pharmacokinetic characteristics; (3) providing evidence of target engagement, pathway modulation, and biological effect with proof of concept pharmacodynamic biomarkers; (4) determining intermediate biomarkers of response; (5) assessing tumor response; and (6) determining how to overcome resistance by combination or sequential therapy and new target/drug discovery. The questions asked in the PhAT should be viewed as a continuum and not used in isolation. Different drug development programmes derive different types of benefit from these questions. The PhAT is critical in making go-no-go decisions in the development of currently studied drugs and will continue to be relevant to discovery and development of future generations of anticancer agents.
Collapse
Affiliation(s)
- Udai Banerji
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK.
| |
Collapse
|
11
|
Rossanese O, Eccles S, Springer C, Swain A, Raynaud FI, Workman P, Kirkin V. The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the preclinical development of targeted anticancer drugs. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ddmod.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Gong C, Liu B, Yao Y, Qu S, Luo W, Tan W, Liu Q, Yao H, Zou L, Su F, Song E. Potentiated DNA Damage Response in Circulating Breast Tumor Cells Confers Resistance to Chemotherapy. J Biol Chem 2015; 290:14811-25. [PMID: 25897074 DOI: 10.1074/jbc.m115.652628] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells (CTCs) are seeds for cancer metastasis and are predictive of poor prognosis in breast cancer patients. Whether CTCs and primary tumor cells (PTCs) respond to chemotherapy differently is not known. Here, we show that CTCs of breast cancer are more resistant to chemotherapy than PTCs because of potentiated DNA repair. Surprisingly, the chemoresistance of CTCs was recapitulated in PTCs when they were detached from the extracellular matrix. Detachment of PTCs increased the levels of reactive oxygen species and partially activated the DNA damage checkpoint, converting PTCs to a CTC-like state. Inhibition of checkpoint kinases Chk1 and Chk2 in CTCs reduces the basal checkpoint response and sensitizes CTCs to DNA damage in vitro and in mouse xenografts. Our results suggest that DNA damage checkpoint inhibitors may benefit the chemotherapy of breast cancer patients by suppressing the chemoresistance of CTCs and reducing the risk of cancer metastasis.
Collapse
Affiliation(s)
- Chang Gong
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Bodu Liu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Yandan Yao
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Shaohua Qu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Wei Luo
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Weige Tan
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Qiang Liu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Herui Yao
- Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China and
| | - Lee Zou
- the Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129
| | | | - Erwei Song
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| |
Collapse
|
13
|
Yao S, Hu K, Tang G, Gao S, Tang C, Yao B, Nie D, Sun T, Jiang S. Molecular PET Imaging of Cyclophosphamide Induced Apoptosis with 18F-ML-8. BIOMED RESEARCH INTERNATIONAL 2015; 2015:317403. [PMID: 25977920 PMCID: PMC4420799 DOI: 10.1155/2015/317403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/28/2015] [Indexed: 01/08/2023]
Abstract
In this paper, a novel small-molecular apoptotic PET imaging probe, (18)F-ML-8 with a malonate motif structure, is presented and discussed. After study, the small tracer that belongs to a member of ApoSense family is proved to be capable of imaging merely apoptotic regions in the CTX treated tumor-bearing mice. The experimental result is further confirmed by in vitro cell binding assays and TUNEL staining assay. As a result, (18)F-ML-8 could be used for noninvasive visualization of apoptosis induced by antitumor chemotherapy.
Collapse
Affiliation(s)
- Shaobo Yao
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ganghua Tang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyuan Gao
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Caihua Tang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Baoguo Yao
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dahong Nie
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shende Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Pinker K, Helbich TH, Magometschnigg H, Fueger B, Baltzer P. [Molecular breast imaging. An update]. Radiologe 2014; 54:241-53. [PMID: 24557495 DOI: 10.1007/s00117-013-2580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. STANDARD RADIOLOGICAL METHODS Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ((1)H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). METHODICAL INNOVATIONS Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ((23)Na-MRI), phosphorus spectroscopy ((31)P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. PRACTICAL RECOMMENDATIONS It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible.
Collapse
Affiliation(s)
- K Pinker
- Abteilung für Molekulare Bildgebung, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | | | | | | | | |
Collapse
|
15
|
Yao S, Hu K, Tang G, Liang X, Du K, Nie D, Jiang S, Zang L. Positron emission tomography imaging of cell death with [(18)F]FPDuramycin. Apoptosis 2014; 19:841-50. [PMID: 24464510 DOI: 10.1007/s10495-013-0964-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The noninvasive imaging of cell death, including apoptosis and necrosis, is an important tool for the assessment of degenerative diseases and in the monitoring of tumor treatments. Duramycin is a peptide of 19-amino acids. It binds specifically to phosphatidylethanolamine a novel molecular target for cell death. N-(2-(18)F-Fluoropropionyl)duramycin ([(18)F]FPDuramycin) was prepared as a novel positron emission tomography (PET) tracer from the reaction of duramycin with 4-nitrophenyl 2-[(18)F]fluoropropionate ([(18)F]NFP). Compared with control cells (viable tumor cells), the in vitro binding of [(18)F]FPDuramycin with apoptotic cells induced by anti-Fas antibody resulted in a doubling increase, while the binding of [(18)F]FPDuramycin with necrotic cells induced by three freeze and thaw cycles resulted in a threefold increase. Biodistribution study in mice exhibited its rapid blood and renal clearance and predominant accumulation in liver and spleen over 120 min postinjection. Small-animal PET/CT imaging with [(18)F]FPDuramycin proved to be a successful way to visualize in vivo therapeutic-induced tumor cell death. In summary, [(18)F]FPDuramycin seems to be a potential PET probe candidate for noninvasive visualization of in vivo cell death sites induced by chemotherapy in tumors.
Collapse
Affiliation(s)
- Shaobo Yao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China,
| | | | | | | | | | | | | | | |
Collapse
|