1
|
Zikaki K, Kiachaki E, Gaitanaki C, Aggeli IK. "Villains" Turning Good: Antimycin A and Rotenone, Mitochondrial Respiratory Chain Inhibitors, Protect H9c2 Cardiac Cells Against Insults Triggering the Intrinsic Apoptotic Pathway. Int J Mol Sci 2025; 26:2435. [PMID: 40141079 PMCID: PMC11942121 DOI: 10.3390/ijms26062435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mitochondria are the powerhouses of cells, also involved in ROS (reactive oxygen species) generation and cellular death regulation. Thus, several diseases are associated with mitochondrial impairment, including cardiovascular disorders (CVDs). Since CVDs are currently the leading cause of death worldwide, it is very important to evaluate targeting mitochondrial effectors in clinical treatment protocols. Hence, in the present study, antimycin A and rotenone, established inhibitors of the mitochondrial electron transfer chain, were shown to halt apoptotic death induced by curcumin (50 μM) and sorbitol (0.5 M), in H9c2 cardiac cells. In particular, immunoblotting analysis revealed that they totally abolished PARP [poly(ADP-ribose) polymerase] proteolysis, under these conditions. This finding was accompanied by an enhancement of cell viability, recovery of mitochondria networks' integrity, suppression of cytochrome c release into the cytoplasm, and reversal of chromatin condensation. Chelating extracellular calcium (with EGTA) further enhanced the beneficial impact of antimycin A and rotenone on curcumin- or sorbitol-treated H9c2 cells viability. Of interest, the phosphorylation of eIF2α, indicative of the onset of the pro-survival Integrated Stress Response (IRS), was sustained under these conditions. Overall, our data highlight the anti-apoptotic effect of these compounds, unmasking their potential as mediators in novel therapeutic interventions against mitochondria-associated cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | - Ioanna-Katerina Aggeli
- Section of Animal and Human Physiology, Faculty of Biology, School of Science, National and Kapodistrian University of Athens, University Campus, Ilissia, 15784 Athens, Greece; (K.Z.); (E.K.); (C.G.)
| |
Collapse
|
2
|
Wu ZJ, Li YC, Zheng Y, Zhou MQ, Li H, Wu SX, Zhao XY, Yang YH, Du L. Differential effects of EPA and DHA on aging-related sarcopenia in mice and possible mechanisms involved. Food Funct 2025; 16:601-616. [PMID: 39704327 DOI: 10.1039/d4fo04341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Sarcopenia frequently occurs with aging and leads to major adverse impacts in elderly individuals. The protective effects of omega-3 polyunsaturated fatty acids against aging-related sarcopenia have been demonstrated; however, the effect and underlying mechanism of EPA or DHA alone remain inconclusive. Hence, the present study was aimed to clarify the differential effects and possible mechanisms of EPA and DHA on aging-related sarcopenia. In this study, two-month-old and eighteen-month-old male C57BL/6J mice were fed with an AIN-93M diet and an AIN-93M diet containing 1% EPA or 1% DHA for 24 weeks, respectively. The results revealed that EPA and DHA supplementation effectively alleviated the decline in grip strength, skeletal muscle mass, and myofiber cross-sectional areas in aged mice, with EPA exhibiting a better effect against aging-related sarcopenia than DHA. The ROS scavenging role of EPA in aged skeletal muscle was also superior to that of DHA. Additionally, EPA showed a stronger role in improving protein turnover and myogenesis in aged skeletal muscle, as evidenced by suppressing the activation of FoxO3a and NF-κB, blunting the expression levels of muscle atrophy markers MAFbx and MuRF1, activating the PI3K/Akt/mTOR signaling pathway, and elevating MyoD expression. Moreover, EPA also revealed a better effect on inhibiting mitochondria- and endoplasmic reticulum stress-mediated apoptosis in aged skeletal muscle. Furthermore, EPA manifested a more pronounced effect on improving mitochondrial damage of aged skeletal muscle than DHA, and the reason might be due to its superior capability of regulating mitochondrial quality control, as clearly shown by enhancing mitochondrial biogenesis through the AMPK/PGC-1α-dependent pathway, restraining the loss of mitochondrial fusion and fission proteins including Opa1, Mfn2, and Fis1, and promoting mitophagy via the PINK1/Parkin-dependent pathway.
Collapse
Affiliation(s)
- Zi-Jian Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Ying-Chao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Suzhou Centers for Diseases Prevention and Control, No. 498 Qingyunbei Road, Suzhou, Anhui, 234000, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shi-Xiang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Xin-Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong, 250353, China.
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong, 264300, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
3
|
Rostamzadeh F, Jafarinejad-Farsangi S, Ansari-Asl Z, Farrokhi MS, Jafari E. Treatment for Myocardial Infarction: In Vivo Evaluation of Curcumin-Loaded PEGylated-GQD Nanoparticles. J Cardiovasc Pharmacol 2023; 81:361-372. [PMID: 36822208 DOI: 10.1097/fjc.0000000000001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT Curcumin (Cur) has been suggested as a complementary treatment for cardiovascular diseases. Its efficiency, however, is modest due to poor biocompatibility. This study examined the effects of curcumin loaded on polyethylene glycol-graphene quantum dots (Cur-PEG-GQDs) on hemodynamic and cardiac function in rats with myocardial infarction (MI). The study groups included control, MI, MI+Cur-3, MI + Cur-7, MI + Cur-15, MI + PEG-GQDs-5, MI + PEG-GQDs-10, MI + Cur-PEG-GQDs-5, and MI + Cur-PEG-GQDs-10. MI was established by left anterior descending artery ligation. Two weeks after intraperitoneal administration of vehicle, Cur, PEG-GQDs, and Cur-PEG-GQDs, blood pressure and heart contractility indices were measured. Triphenyl tetrazolium chloride, colorimetry, and clinical laboratory methods were used to measure the infarct size, the oxidant and antioxidant content, and the kidney and liver function parameters, respectively. In the MI animals, Cur-7, PEG-GQDs-10, Cur-PEG-GQDs-5, and Cur-PEG-GQDs-10 recovered systolic blood pressure, diastolic blood pressure, left ventricular systolic pressure, and ±dp/dt max disturbances and reduced myocardial infarct size, fibrosis, and left ventricular end-diastolic pressure. Curcumin lowered antioxidant markers and elevated 1 oxidant marker in the heart in a dose-dependent manner. Although Cur-PEG-GQDs-5 and Cur-PEG-GQDs-10 reduced curcumin's oxidative stress effects, the superoxide dismutase, glutathione peroxidase, and total antioxidant capacity levels were significantly lower in Cur-PEG-GQDs-5 and Cur-PEG-GQDs-10 groups compared with the MI group. Malondialdehyde levels were lower in Cur-PEG-GQDs-5 and -10 groups compared with the Cur-3, Cur-7, and Cur-15 groups. The glutathione/glutathione disulfide ratio improved in the groups treated by Cur-7, PEG-GQDs-10, Cur-PEG-GQDs-5, and Cur-PEG-GQDs-10. The findings indicated that Cur-PEG-GQDs mitigated MI-induced cardiac dysfunction. However, because of the increase in oxidative stress in the heart, nonclassic mechanisms may be involved in the beneficial effect of Cur-PEG-GQDs on MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman
| | - Saeideh Jafarinejad-Farsangi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz
| | - Mitra Shadkam Farrokhi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman; and
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Chioreanu A, Mot IC, Horhat DI, Balica NC, Sarau CA, Morar R, Domuta EM, Dumitru C, Negrean RA, Bumbu BA, Ravulapalli M, Alambaram S, Akshay R, Pricop M. Development and Preliminary Characterization of Polyester-Urethane Microparticles Used in Curcumin Drug Delivery System for Oropharyngeal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1689. [PMID: 36422227 PMCID: PMC9693431 DOI: 10.3390/medicina58111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Curcumin (Cc) as an active substance is known for its anti-inflammatory, anticoagulant, antioxidant, and anti-carcinogenic effects, together with its role in cholesterol regulation, and its use in different gastrointestinal derangements. On the other hand, curcumin can be used for its properties as an inactive substance, with Cc particles being more often tested in pharmaceutical formulations for drug delivery, with promising safety records and kinetics. The aim of this research was to obtain and characterize polyurethane microparticles that can be used as a carrier with a controlled Cc release. Materials and Methods: The in vitro samples were characterized by the Zetasizer procedure, and UV-Vis spectroscopy, while the in-vivo measurements on human subjects were performed by non-invasive skin assays (trans-epidermal water loss, erythema, and skin hydration). A total of 16 patients with oropharyngeal cancer stages II and III in equal proportions were recruited for participation. Results: The experimental values of sample characteristics using the Zetasizer identified a mean structural size of 215 nm in the polyester-urethane preparate (PU), compared to 271 nm in the curcumin-based PU. Although the size was statistically significantly different, the IPDI and Zeta potential did not differ significantly (22.91 mV vs. 23.74 mV). The average age during the study period was 57.6 years for patients in the PU group, respectively, and 55.1 years in those who received the curcumin preparations. The majority of oropharyngeal cancers were of HPV-related etiology. There were no significant side effects; 75.0% of patients in the PU group reporting no side effects, compared to 87.5% in the Cc group. The 48 h TEWL measurement at the end of the experiment found a statistically significant difference between the PU and the Cc group (2.2 g/h/m2 vs. 2.6 g/h/m2). The erythema assessment showed a starting measurement point for both research groups with a 5.1-unit difference. After 48 h, the difference between PU and PU_Cc was just 1.7 units (p-value = 0.576). The overall difference compared to the reference group with sodium lauryl sulfate (SLS) was statistically significant at a 95% significance level. Conclusions: Our findings indicate the obtaining of almost homogeneous particles with a medium tendency to form agglomerations, with a good capacity of encapsulation (around 60%), a medium release rate, and a non-irritative potential. Therefore, this polyester-urethane with Cc microparticles can be tested in other clinical evaluations.
Collapse
Affiliation(s)
- Alexandru Chioreanu
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Delia Ioana Horhat
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Nicolae Constantin Balica
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cristian Andrei Sarau
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Raluca Morar
- Department of Ear-Nose-Throat, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Eugenia Maria Domuta
- Surgery Department, Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410073 Oradea, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | | | - Bogdan Andrei Bumbu
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Madhavi Ravulapalli
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Satish Alambaram
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Raja Akshay
- Malla Reddy Institute of Medical Sciences, Suraram Main Road 138, Hyderabad 500055, India
| | - Marius Pricop
- Discipline of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101591. [PMID: 34679726 PMCID: PMC8533243 DOI: 10.3390/antiox10101591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Anticancer activities of plant polyphenols have been demonstrated in various models of neoplasia. However, evidence obtained in numerous in vitro studies indicates that proliferation arrest and/or killing of cancer cells require quite high micromolar concentrations of polyphenols that are difficult to reach in vivo and can also be (geno)toxic to at least some types of normal cells. The ability of certain polyphenols to synergize with one another at low concentrations can be used as a promising strategy to effectively treat human malignancies. We have recently reported that curcumin and carnosic acid applied at non-cytotoxic concentrations synergistically cooperate to induce massive apoptosis in acute myeloid leukemia cells, but not in normal hematopoietic and non-hematopoietic cells, via sustained cytosolic calcium overload. Here, we show that the two polyphenols can also synergistically suppress the growth of DU145 and PC-3 metastatic prostate cancer cell cultures. However, instead of cell killing, the combined treatment induced a marked inhibition of cell proliferation associated with G0/G1 cell cycle arrest. This was preceded by transient elevation of cytosolic calcium levels and prolonged dissipation of the mitochondrial membrane potential, without generating oxidative stress, and was associated with defective oxidative phosphorylation encompassing mitochondrial dysfunction. The above effects were concomitant with a significant downregulation of mRNA and protein expression of the oncogenic kinase SGK1, the mitochondria-hosted mTOR component. In addition, a moderate decrease in SGK1 phosphorylation at Ser422 was observed in polyphenol-treated cells. The mTOR inhibitor rapamycin produced a similar reduction in SGK1 mRNA and protein levels as well as phosphorylation. Collectively, our findings suggest that the combination of curcumin and carnosic acid at potentially bioavailable concentrations may effectively target different types of cancer cells by distinct modes of action. This and similar combinations merit further exploration as an anticancer modality.
Collapse
|
6
|
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:95-118. [PMID: 33357071 DOI: 10.1080/10937404.2020.1860842] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| |
Collapse
|
7
|
Karthikeyan A, Young KN, Moniruzzaman M, Beyene AM, Do K, Kalaiselvi S, Min T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021; 13:484. [PMID: 33918207 PMCID: PMC8065662 DOI: 10.3390/pharmaceutics13040484] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disorder of the small intestine and colon. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), and it is a major factor for the development of colon cancer, referred to as colitis-associated cancer (CAC). The current treatment of IBD mainly includes the use of synthetic drugs and monoclonal antibodies. However, these drugs have side effects over long-term use, and the high relapse rate restricts their application. In the recent past, many studies had witnessed a surge in applying plant-derived products to manage various diseases, including IBD. Curcumin is a bioactive component derived from a rhizome of turmeric (Curcuma longa). Numerous in vitro and in vivo studies show that curcumin may interact with many cellular targets (NF-κB, JAKs/STATs, MAPKs, TNF-γ, IL-6, PPARγ, and TRPV1) and effectively reduce the progression of IBD with promising results. Thus, curcumin is a potential therapeutic agent for patients with IBD once it significantly decreases clinical relapse in patients with quiescent IBD. This review aims to summarize recent advances and provide a comprehensive picture of curcumin's effectiveness in IBD and offer our view on future research on curcumin in IBD treatment.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Kim Na Young
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Senthil Kalaiselvi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| |
Collapse
|
8
|
Xie J, Chen MH, Ying CP, Chen MY. Neferine induces p38 MAPK/JNK1/2 activation to modulate melanoma proliferation, apoptosis, and oxidative stress. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1643. [PMID: 33490155 PMCID: PMC7812205 DOI: 10.21037/atm-20-7201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Melanoma is a malignant skin cancer that has a poor prognosis in advanced patients. The aim of the present study was to investigate the antitumor role of neferine in melanoma. Methods A375 and C32 cells were selected as research vectors in vitro. Cell counting Kit-8, 5-ethynyl-2’-deoxyuridine staining, transwell, and flow cytometry assay were used to examined cell malignant phenotypes. Mitochondrial dysfunction was detected by 5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-imidacarbocyanine iodide staining and enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) generation was measured using oxidation sensitive fluorescent probe. The phosphorylation activity of p38 and Jun-N-terminal kinase (JNK) 1/2 were examined by Western blot. A xenograft model was established via the subcutaneous injection of A375 cells into the right flank of BALB/c mice in vivo. Results Neferine (2.5, 5, or 10 µM) treatment inhibited proliferation, invasion, and enhanced apoptotic rate of A375 and C32 cells. Neferine treatment induced abnormal changes in mitochondrial membrane potential. Further studies showed that neferine could significantly increase the production of reactive oxygen species (ROS) and 3,4-methylenedioxyamphetamine (MDA) content, decreased the superoxide dismutase (SOD) level. Neferine (5, 10, or 20 mg/kg) obviously suppressed the weight and size of the xenograft tumor, the number of apoptotic cells in vivo, and the expression of Ki67+ and survivin+ decreased. Notably, neferine also activated the phosphorylation of p38 and JNK1/2. Conclusions Neferine inhibits the proliferative and invasion ability of melanoma cells and promotes their apoptosis, ameliorating the malignant progression of melanoma, likely achieved by upregulating the phosphorylation levels of p38 mitogen-activated protein kinase and JNK1/2.
Collapse
Affiliation(s)
- Jun Xie
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ming-Hui Chen
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Chuan-Peng Ying
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ming-Yi Chen
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
9
|
Zepeda-Quiróz I, Sánchez-Barrera H, Colín-Val Z, Robledo-Cadena DX, Rodríguez-Enríquez S, López-Marure R. Curcumin promotes oxidative stress, apoptosis and autophagy in H9c2 rat cardiomyoblasts. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Al-Khayal K, Vaali-Mohammed MA, Elwatidy M, Bin Traiki T, Al-Obeed O, Azam M, Khan Z, Abdulla M, Ahmad R. A novel coordination complex of platinum (PT) induces cell death in colorectal cancer by altering redox balance and modulating MAPK pathway. BMC Cancer 2020; 20:685. [PMID: 32703189 PMCID: PMC7376665 DOI: 10.1186/s12885-020-07165-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous tumor having various genetic alterations. The current treatment options had limited impact on disease free survival due to therapeutic resistance. Novel anticancer agents are needed to treat CRC specifically metastatic colorectal cancer. A novel coordination complex of platinum, (salicylaldiminato)Pt(II) complex with dimethylpropylene linkage (PT) exhibited potential anti-cancer activity. In this study, we explored the molecular mechanism of PT-induced cell death in colorectal cancer. Methods Colony formation was evaluated using the clonogenic assay. Apoptosis, cell cycle analysis, reactive oxygen species, mitochondrial membrane potential and caspase-3/− 7 were assessed by flow cytometry. Glutathione level was detected by colorimetric assay. PT-induced alteration in pro-apoptotic/ anti-apoptotic proteins and other signaling pathways were investigated using western blotting. P38 downregulation was performed using siRNA. Results In the present study, we explored the molecular mechanism of PT-mediated inhibition of cell proliferation in colorectal cancer cells. PT significantly inhibited the colony formation in human colorectal cancer cell lines (HT-29, SW480 and SW620) by inducing apoptosis and necrosis. This platinum complex was shown to significantly increase the reactive oxygen species (ROS) generation, depletion of glutathione and reduced mitochondrial membrane potential in colorectal cancer cells. Exposure to PT resulted in the downregulation of anti-apoptotic proteins (Bcl2, BclxL, XIAP) and alteration in Cyclins expression. Furthermore, PT increased cytochrome c release into cytosol and enhanced PARP cleavage leading to activation of intrinsic apoptotic pathway. Moreover, pre-treatment with ROS scavenger N-acetylcysteine (NAC) attenuated apoptosis suggesting that PT-induced apoptosis was driven by oxidative stress. Additionally, we show that PT-induced apoptosis was mediated by activating p38 MAPK and inhibiting AKT pathways. This was demonstrated by using chemical inhibitor and siRNA against p38 kinase which blocked the cytochrome c release and apoptosis in colorectal cancer cells. Conclusion Collectively, our data demonstrates that the platinum complex (PT) exerts its anti-proliferative effect on CRC by ROS-mediated apoptosis and activating p38 MAPK pathway. Thus, our findings reveal a novel mechanism of action for PT on colorectal cancer cells and may have therapeutic implication.
Collapse
Affiliation(s)
- Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mohammed Elwatidy
- College of Medicine Research Center, King Saud University College of Medicine, Riyadh, 11472, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia.
| |
Collapse
|
11
|
da Silva TAL, de Medeiros DC, da Silva Cunha de Medeiros RC, Medeiros RMV, de Souza LBFC, de Medeiros JA, Dos Santos RVT, de Alcântara Varela PW, Leite-Lais L, Dantas PMS. Influence of curcumin on glycemic profile, inflammatory markers, and oxidative stress in HIV-infected individuals: A randomized controlled trial. Phytother Res 2020; 34:2323-2330. [PMID: 32301204 DOI: 10.1002/ptr.6683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 03/12/2020] [Indexed: 11/07/2022]
Abstract
To evaluate the influence of curcumin supplementation on the glycemic profile, inflammatory markers, and oxidative stress in HIV-infected individuals under antiretroviral therapy. This double-blind, crossover, randomized clinical trial was composed of 20 subjects arranged initially into experimental group (n = 10) and placebo group (n = 10) groups, receiving 1,000 mg curcumin/day or microcrystalline cellulose/day, respectively, during a 30-day period and 12-day washout. Subsequently, the groups were switched to follow the crossover design. Fasting glucose and insulin, IL-10, tumor necrosis factor alpha, malonialdehyde, and reduced glutathione were measured. Food consumption was evaluated as a control variable. Descriptive statistics are presented as mean and standard deviation, and inferential analyses were performed from two-way analysis of variance and the magnitude of the effect. No significant improvements were observed in the glycemic, inflammatory, or oxidative stress profiles. Although the mean serum fasting glucose levels and the homeostatic model assessment index presented qualitative improvement in the CG, this result should be interpreted with caution since the observed variation may represent acceptable fluctuation, in addition to the small difference between the means, added to the large variation observed in the standard deviation. Supplementation with curcumin in HIV-infected individuals undergoing antiretroviral therapy and training did not improve the glycemic, inflammatory, or oxidative stress profiles.
Collapse
Affiliation(s)
- Tatiane A L da Silva
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Radamés M V Medeiros
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luanda B F C de Souza
- Postgraduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jason A de Medeiros
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Lucia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo M S Dantas
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
12
|
Wu L, Huang X, Kuang Y, Xing Z, Deng X, Luo Z. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: an in vitro and in vivo study. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2787-2798. [PMID: 31496655 PMCID: PMC6697672 DOI: 10.2147/dddt.s209947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Objective Thapsigargin (TG) is a natural product that exists in most parts of the plant Thapsia garganica L. and possesses potential anticancer activities against variety tumor cell lines. TG induces endoplasmic reticulum (ER) stress and apoptosis by inhibiting cancer growth. However, the antineoplastic effect of TG in human adrenocortical carcinoma (ACC) cells is still unknown. Methods In this study, two human ACC cell lines including SW-13 and NCI-H295R were employed to explore the potential role of TG in ACC. A mouse xenograft model of SW-13 cells was established to verify the role of TG in vivo. The cell viability was tested using Cell Counting Kit-8 and Transwell assays. Flow cytometry and Hoechst 33,258 staining were employed to analyze cell apoptosis. RT-qPCR and Western blot (WB) were performed to explore the underlying mechanism of TG-induced apoptosis in ACC cells. Results The results indicated that TG dose-dependently inhibited proliferation, migration and invasion in human ACC cells. TG significantly increased the mitochondrial rate of apoptosis and ER stress activity in ACC cells and suppressed ACC xenograft growth in vivo. In addition, the expression of Jun N-terminal kinase (JNK) signaling-related genes and proteins was upregulated by the treatment with TG. Conclusion Our findings suggest that TG inhibits the viability of ACC cells by inducing apoptosis through the activation of JNK signaling. Thus, TG is expected to be a potential candidate for the treatment of ACC.
Collapse
Affiliation(s)
- Lili Wu
- Department of Integrated Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xuemei Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yaqi Kuang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Zengmiao Xing
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiujun Deng
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
13
|
Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, Abdel-Aziz HA, Alafeefy A, Abdulla M. Induction of ROS‑mediated cell death and activation of the JNK pathway by a sulfonamide derivative. Int J Mol Med 2019; 44:1552-1562. [PMID: 31364730 DOI: 10.3892/ijmm.2019.4284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
Collapse
Affiliation(s)
- Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mohammed Elwatidy
- CMRC, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo 12622, Egypt
| | - Ahmed Alafeefy
- Department of Chemistry, Kulliyyah of Science, International Islamic University, Kuantan 25200, Malaysia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| |
Collapse
|
14
|
Luo J, Peng S, Bai W, Wu Z, Shan Z, Wu Z, Yuan X, Che X, Duan Z, Peng J, Wang Y, Zhang S. Matrilin-2 prevents the TNFα-induced apoptosis of WB-F344 cells via suppressing JNK pathway. Biotechnol Appl Biochem 2019; 66:309-315. [PMID: 30624798 DOI: 10.1002/bab.1726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022]
Abstract
Oval cells, a kind of hepatic progenitor cell quiescent at normal condition, activates to proliferate and differentiate into hepatocytes under severe and long-term liver injury, which usually raises severe inflammation. However, how oval cell survives in the inflammatory milieu interne is still unclear. Tumor necrosis factor α (TNFα), mimicking inflammatory hepatic milieu interne, was used to treat oval cell line, WB-F344, to test the protective function of matrilin-2. In this study, our data suggested that matrilin-2 prevented TNFα-induced apoptosis in WB-F344 cells via inhibiting ASK1/MKK7/JNK pathway. In conclusion, we determined that matrilin-2 plays the key role in maintaining the survival of oval cell and guarantees its proliferation under various injury factors.
Collapse
Affiliation(s)
- Junming Luo
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
- Department of Intensive Care Unit, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, People's Republic of China
| | - Shaohua Peng
- Department of Pathology, Medical School of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Wenbin Bai
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Zhaoyu Wu
- Department of Oncology, the Affiliated Hospital of Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Zhongshu Shan
- Department of Internal Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Zetao Wu
- Department of Internal Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Xin Yuan
- Department of Internal Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Xiaoming Che
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Zhili Duan
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, People's Republic of China
| | - Jinwu Peng
- Department of Pathology, the Affiliated Changde Hospital of Xiangya Medical School of Central South University, Changsha, People's Republic of China
| | - Yichun Wang
- Department of Intensive Care Unit, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, People's Republic of China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Weihai, 264200, Shandong Province, China
| |
Collapse
|
15
|
Bianchi G, Ravera S, Traverso C, Amaro A, Piaggio F, Emionite L, Bachetti T, Pfeffer U, Raffaghello L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis 2019; 39:1141-1150. [PMID: 29860383 DOI: 10.1093/carcin/bgy076] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | | | | | - Laura Emionite
- Animal Facility, Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Bachetti
- Department of Medical Genetics, Istituto G. Gaslini, Genova, Italy.,Biochemistry Laboratory, University of Genova, Genova, Italy
| | | | | |
Collapse
|
16
|
Valokola MG, Karimi G, Razavi BM, Kianfar M, Jafarian AH, Jaafari MR, Imenshahidi M. The protective activity of nanomicelle curcumin in bisphenol A-induced cardiotoxicity following subacute exposure in rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:319-329. [PMID: 30496632 DOI: 10.1002/tox.22687] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA), an estrogenic compound, is used in manufacture of polycarbonate plastics and epoxy resins. Curcumin, the active ingredient of turmeric, is a potent protective compound against cardiac diseases. In this study the protective effect of nanomicelle curcumin on BPA-induced subchronic cardiotoxicity in rats was evaluated. Rats were divided into 6 groups including control, nanomicelle curcumin (50 mg/kg, gavage), BPA (50 mg/kg, gavage), nanomicelle curcumin (10, 25, and 50 mg/kg) plus BPA. The treatments were continued for 4 weeks. Results revealed that BPA significantly induced histophatological injuries including focal lymphatic inflammation, nuclear degenerative changes and cytoplasmic vacuolation, increased body weight, systolic and diastolic blood pressures, malondialdehyde and Creatine phosphokinase-MB level and decreased glutathione content in comparison with control group. In addition, in electrocardiographic graph, RR, QT, and PQ intervals were increased by BPA. Western blot analysis showed that BPA up-regulated phosphorylated p38 (p38-mitogen-activated protein kinase) and JNK (c-jun NH2 terminal kinases), while down-regulated phosphorylated AKT (Protein Kinase B) and ERK1/2 (extracellular signal-regulated protein kinases 1 and 2). However, nanomicelle curcumin (50 mg/kg) significantly improved these toxic effects of BPA in rat heart tissue. The results provide evidence that nanomicelle curcumin showed preventive effects on subchronic exposure to BPA induced toxicity in the heart tissue in rats.
Collapse
Affiliation(s)
- Mahmoud Gorji Valokola
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Kianfar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Abstract
Cardiovascular disease is one of the leading causes of death and disability in the world. Atherosclerosis, characterized by lipid accumulation and chronic inflammation in the vessel wall, is the main feature of cardiovascular disease. Although the amounts of fruits and vegetables present in the diets vary by country, diets, worldwide, contain large amounts of spices; this may have positive or negative effects on the initiation and development of atherosclerosis. In this review, we focused on the potential protective effects of specific nutrients from spices, such as pepper, ginger, garlic, onion, cinnamon and chili, in atherosclerosis and atherosclerotic cardiovascular disease. The mechanisms, epidemiological analysis, and clinical studies focusing on a variety of spices are covered in this review. Based on the integrated information, we aimed to raise specific recommendations for people with different dietary styles for the prevention of atherosclerotic cardiovascular disease through dietary habit adjustments.
Collapse
|
18
|
Saeidinia A, Keihanian F, Butler AE, Bagheri RK, Atkin SL, Sahebkar A. Curcumin in heart failure: A choice for complementary therapy? Pharmacol Res 2018; 131:112-119. [PMID: 29550354 DOI: 10.1016/j.phrs.2018.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Heart failure is a major public health concern and one of the most common reasons for a cardiac hospital admission. Heart failure may be classified as having a reduced or preserved ejection fraction and its severity is based on the symptom score. Given the aging population, it is predicted that admissions with heart failure will increase. Whilst pharmacological therapy has improved the associated morbidity and mortality, there is a need for additional therapies to improve the clinical outcome as the death rate remains high. Curcumin is a natural product derived from turmeric that appears to have cardiovascular benefit through a number of mechanisms. In this review, we have assessed the mechanisms by which curcumin may exert its effects in different models of heart failure and show that it has promise as a complementary treatment in heart failure.
Collapse
Affiliation(s)
- Amin Saeidinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Keihanian
- Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Sports City Road, Doha, Qatar
| | - Ramin Khameneh Bagheri
- Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Liu N, Cui C, Sun Y, Zhang F, Wang S, Su G, Cai X. Hydrogen peroxide promotes the expression of angiopoietin like 4 in RAW264.7 macrophages via MAPK pathways. Mol Med Rep 2017; 16:6128-6133. [PMID: 28849063 DOI: 10.3892/mmr.2017.7365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies including some vivo experiments and large scale clinical trials have indicated that angiopoietin like 4 (ANGPTL4) is involved in atherosclerosis. However, the specific mechanism underlying the process remains unresolved. Similarly, cumulative evidence indicated that hydrogen peroxide (H2O2) is closely related to the occurrence and development of atherosclerosis. The current study investigated whether H2O2 treatment can affect ANGPTL4 release in macrophage cells cell viability assay, western blot analysis, ELISA and immunofluorescence. It was determined that treatment with 0.25 and 0.5 mM H2O2 resulted in a significant increase in ANGPTL4 protein expression in macrophage cells. Mitogen‑activated protein kinase (MAPK) pathways were implicated in the secretion of ANGPTL4 regulated by H2O2, and specific inhibitors of MAPK1 (also known as ERK) and p38 MAPK significantly decreased H2O2 induced ANGPTL4 protein expression. Accordingly, it was demonstrated that ANGPTL4 expression was regulated by H2O2 via ERK and p38 MAPK, but not the MAPK8 (also known as JNK) pathway. In view of the effects of H2O2 and ANGPTL4 on atherosclerosis, the influence of H2O2 on ANGPTL4 provided new insight into the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Nan Liu
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Changxia Cui
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yue Sun
- Department of Cardiology, Shandong University, Cheeloo College of Medicine, Jinan, Shandong 250013, P.R. China
| | - Feng Zhang
- Department of Cardiology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
20
|
Jiang S, Han J, Li T, Xin Z, Ma Z, Di W, Hu W, Gong B, Di S, Wang D, Yang Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res 2017; 119:373-383. [PMID: 28274852 DOI: 10.1016/j.phrs.2017.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Abstract
Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Hu
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
21
|
Gounden S, Chuturgoon A. Curcumin Upregulates Antioxidant Defense, Lon Protease, and Heat-Shock Protein 70 Under Hyperglycemic Conditions in Human Hepatoma Cells. J Med Food 2017; 20:465-473. [PMID: 28387563 DOI: 10.1089/jmf.2016.0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sirtuin 3 (SIRT3) regulates mitochondrial antioxidant (AO) defense and improves mitochondrial disorders. Curcumin protects mitochondria; however, the mechanisms need investigation. We postulated that curcumin increases AO defense under hyperglycemic conditions in HepG2 cells through SIRT3-mediated mechanisms. Cell viability was determined in HepG2 cells cultured with 5 mM glucose, 19.9 mM mannitol, vehicle control, 10 mM glucose, and 30 mM glucose in the absence or presence of curcumin for 24 h. SIRT3, nuclear factor-kappa B (NF-κB), heat-shock protein 70 (Hsp70), and Lon protein expressions were determined using western blot. Transcript levels of SIRT3, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), cAMP response element-binding protein (CREB), glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2) were measured by quantitative polymerase chain reaction. Cell viability, SIRT3 protein expression, transcript levels of SIRT3, PGC-1α, CREB, GPx1, and SOD2 and protein expressions of NF-κB, Lon, and Hsp70 were significantly increased in the curcumin-treated hyperglycemic groups. Since curcumin and SIRT3 both improve mitochondrial function and AO defense, SIRT3 may be involved in the protective effects of curcumin.
Collapse
Affiliation(s)
- Shivona Gounden
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, Howard College, University of KwaZulu-Natal , Durban, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, Howard College, University of KwaZulu-Natal , Durban, South Africa
| |
Collapse
|
22
|
Farajian Mashhadi F, Salimi S, Forouzandeh F, Naghsh N. Comparison of Anticancer Activity of Hydroalcoholic Extracts of Curcuma longa L., Peganum harmala L., and Boswellia serrata on HeLa cells. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-37336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Comparison of Anticancer Activity of Hydroalcoholic Extracts of Curcuma longa L., Peganum harmala L., and Boswellia serrata on HeLa cells. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.37336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Xu L, Zhang X, Li Y, Lu S, Lu S, Li J, Wang Y, Tian X, Wei JJ, Shao C, Liu Z. Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/ JNK activation. Tumour Biol 2016; 37:8721-9. [PMID: 26738868 DOI: 10.1007/s13277-015-4737-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Patients usually have poor prognosis because of late diagnosis, relapse, and chemoresistance. It is pressing to seek novel agent for the treatment of ovarian cancer. Neferine is a bisbenzylisoquinoline alkaloid isolated from the embryos of lotus (Nelumbo nucifera). In this study, we investigated the antitumor effect of neferine on ovarian cancer cells. We found that neferine exhibited growth-inhibitory effect on human ovarian cancer cells, whereas showing less cytotoxic to non-malignant fallopian tube epithelial cells. Furthermore, we demonstrated that neferine induced autophagy and inactivated the mTOR pathway. Finally, we found that both p38 MAPK and JNK signaling pathways were activated by neferine treatment and contributed to the induction of autophagy in ovarian cancer cells. In conclusion, our findings showed that neferine induced autophagy of human ovarian cancer cells via p38 MAPK/JNK activation. Neferine may be explored as a promising antitumoral agent in ovarian cancer.
Collapse
Affiliation(s)
- Limei Xu
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Xiyu Zhang
- Ministry of Education Key Laboratory of Experimental Teratology and Department of Molecular Medicine and Genetics, Shandong University, Jinan, Shandong, China
| | - Yinuo Li
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shuhua Lu
- Hospital Information Center, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Shan Lu
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Jieyin Li
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yuqiong Wang
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Xiaoxue Tian
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Changshun Shao
- Ministry of Education Key Laboratory of Experimental Teratology and Department of Molecular Medicine and Genetics, Shandong University, Jinan, Shandong, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
- Ministry of Education Key Laboratory of Experimental Teratology and Department of Molecular Medicine and Genetics, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
25
|
Panja S, Ghate NB, Mandal N. A microalga, Euglena tuba induces apoptosis and suppresses metastasis in human lung and breast carcinoma cells through ROS-mediated regulation of MAPKs. Cancer Cell Int 2016; 16:51. [PMID: 27366113 PMCID: PMC4928336 DOI: 10.1186/s12935-016-0330-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Euglena tuba, a microalga, is known for its excellent antioxidant and iron-chelation activities; however its anticancer efficacies have not been reported yet. This study investigates the antitumor and antimetastatic activities of 70 % methanolic extract of Euglena tuba (ETME) against human lung (A549) and breast cancer (MCF-7) cells in vitro. Moreover, we had examined ETME’s role in inducing intracellular ROS with the regulation of antioxidants and MAPK pathway. Methods Anticancer activity of ETME was thoroughly studied using flow cytometry, confocal microscopy and western blotting; along with various biochemical assays for analysing ROS-induced regulation of antioxidant enzymes. Inhibition of invasion and migration of malignant cells by ETME were investigated by wound healing and zymographic studies. DNA–Protein interaction with ETME was also studied. Results ETME inhibited the growth of both A549 (IC50 92.14 µg/ml) and MCF-7 cells (IC50 50.27 µg/ml) by inducing apoptosis, while remained non-toxic against nomral WI-38 cells (IC50 911.43 µg/ml). ETME treatment resulted in increasing Bax/Bcl-2 ratio, BID truncation and activation of caspase cascade. This ultimately leads to PARP degradation and apoptosis through the intrinsic and extrinsic pathway in both A549 and MCF-7 cells. Wound healing and gelatin zymography studies revealed that ETME significantly inhibited the invasion and migration of both A549 and MCF-7 cells dose-dependently through the downregulation of MMP-9. Further investigations showed that ETME selectively induces intracellular ROS, regulated the levels of intracellular antioxidants and suppresses the activation of ERK1/2, JNK, P38 mitogen-activated protein kinase pathways in both type of malignant cells. Further DNA and protein binding studies revealed that ETME strongly interact with DNA as well as protein attributing the possibilities of presence of components which are targeting the macromolecules in cancer cells. Moreover, when the identified compounds from ETME were examined for their cytotoxicities individually, it was found that they lost their specificities towards cancer cells and also attacked normal cells. Conclusions Our study suggests that ETME retards the growth of both lung and breast cancer cells, in vitro, through multivariate mechanisms, proving its candidature for the development of better and safer drugs against these cancers.
Collapse
Affiliation(s)
- Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12, C. I. T. Scheme, VII M, Kolkata, 700054 India
| | - Nikhil Baban Ghate
- Division of Molecular Medicine, Bose Institute, P-1/12, C. I. T. Scheme, VII M, Kolkata, 700054 India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, C. I. T. Scheme, VII M, Kolkata, 700054 India
| |
Collapse
|
26
|
GADD45α modulates curcumin sensitivity through c-Abl- and JNK-dependent signaling pathways in a mismatch repair-dependent manner. Mol Cell Biochem 2016; 414:13-22. [PMID: 26833194 DOI: 10.1007/s11010-016-2654-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Colorectal cancer is a critical health concern because of its incidence as the third most prevalent cancer in the world. Currently, 5-fluorouracil (5-FU), 6-thioguanine, and certain other genotoxic agents are mainstays of treatment; however, patients often die due to emergence of resistant population. Curcumin, a bioactive compound derived from the dietary turmeric (Curcuma longa) is an effective anticancer, anti-inflammatory, and antioxidant agent. Previously, we reported that human colorectal cancer cell lines compromised for mismatch repair (MMR) function exhibit heightened sensitivity to curcumin due to sustained curcumin-induced unrepaired DNA damage compared to proficient population counterparts. In this report, we show that the protein levels of gadd45α, whose transcript levels are increased during DNA damage and stress signals, are upregulated following curcumin treatment in a dose- and time-dependent manner. We further observed that cells compromised for Mlh1 function (HCT116 + Ch2) displayed ~twofold increased GADD45α upregulation compared to similarly treated proficient counterparts (HCT116 + Ch3). Similarly, suppression of Mlh1 using ShRNA increased GADD45α upregulation upon curcumin treatment. On the other hand, suppression of GADD45α using SiRNA-blocked curcumin-induced cell death induction in Mlh1-deficient cells. Moreover, inhibition of Abl through ST571 treatment and its downstream effector JNK through SP600125 treatment blocked GADD45α upregulation and cell death triggered by curcumin. Collective results lead us to conclude that GADD45α modulates curcumin sensitivity through activation of c-Abl > JNK signaling in a mismatch repair-dependent manner.
Collapse
|
27
|
Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, Bilsland AE, Boosani CS, Chen S, Ciriolo MR, Crawford S, Fujii H, Georgakilas AG, Guha G, Halicka D, Helferich WG, Heneberg P, Honoki K, Keith WN, Kerkar SP, Mohammed SI, Niccolai E, Nowsheen S, Vasantha Rupasinghe HP, Samadi A, Singh N, Talib WH, Venkateswaran V, Whelan RL, Yang X, Felsher DW. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35 Suppl:S199-S223. [PMID: 25865775 PMCID: PMC4930000 DOI: 10.1016/j.semcancer.2015.02.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Alan E Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | | | - Sarah Crawford
- Department of Biology, Southern Connecticut State University, New Haven, CT, United States
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | | | - William G Helferich
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sid P Kerkar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | | | - Richard L Whelan
- Mount Sinai Roosevelt Hospital, Icahn Mount Sinai School of Medicine, New York City, NY, United States
| | - Xujuan Yang
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
28
|
Schaffer M, Schaffer PM, Bar-Sela G. An update on Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 2015; 18:605-11. [PMID: 26418821 DOI: 10.1097/mco.0000000000000227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Curcumin, commonly known as turmeric, is a spice that comes from the root Curcuma longa. The present article presents an update of new studies of curcumin activities as tested in anticancer models from 2011 to 2015. RECENT FINDINGS Evidence from in-vitro and in-vivo research, together with clinical trials conducted over the past few decades, substantiates the potential of curcumin as an anticancer and anti-inflammatory agent. The development of formulations of curcumin in the form of nanoparticles, liposomes, micelles, or phospholipid complexes to enhance its bioavailability and efficacy are still in the early stages. Clinical trials with curcumin indicate safety, tolerability, and nontoxicity. However, the efficacy is questionable, based on the small numbers of patients in each study. SUMMARY The laboratory and the clinical studies until 2011 were summarized in a review published in this journal. An update of the new studies and knowledge from 2011 to March 2015 focuses on new ways to overcome its low bioavailability and data from clinical trials.
Collapse
Affiliation(s)
- Moshe Schaffer
- aInstitute of Oncology, Baruch Padeh Medical Center, Poriya bBar-Ilan Faculty of Medicine, Israel cFaculty of Medicine, University of Oradea, Romania dDepartment of Radiation Therapy, Bad Trissl Clinic, Oberaudorf, Germany eDivision of Oncology, Rambam Healthcare Campus, and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
29
|
Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, Liu Q, Liu Z, Gong Y, Shao C. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep 2015. [PMID: 26219228 PMCID: PMC4518223 DOI: 10.1038/srep12579] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Isoliensinine, liensinine and neferine are major bisbenzylisoquinoline alkaloids in the seed embryo of lotus (Nelumbo nucifera), and exhibit potential anti-cancer activity. Here, we explored the effects of these alkaloids on triple-negative breast cancer cells and found that among the three alkaloids isoliensinine possesses the most potent cytotoxic effect, primarily by inducing apoptosis. Interestingly, isoliensinine showed a much lower cytotoxicity against MCF-10A, a normal human breast epithelial cell line. Further studies showed that isoliensinine could significantly increase the production of reactive oxygen species (ROS) in triple-negative breast cancer cells, but not in MCF-10A cells. The isoliensinine-induced apoptosis could be attenuated by radical oxygen scavenger N-acetyl cysteine, suggesting that the cytotoxic effect of isoliensinine on cancer cells is at least partially achieved by inducing oxidative stress. We found that both p38 MAPK and JNK signaling pathways were activated by isoliensinine treatment and contributed to the induction of apoptosis. Furthermore, inhibitors or specific siRNAs of p38 MAPK and JNK could attenuate apoptosis induced by isoliensinine. However, only the p38 inhibitor or p38-specific siRNA blocked the elevation of ROS in isoliensinine-treated cells. Our findings thus revealed a novel antitumor effect of isoliensinine on breast cancer cells and may have therapeutic implications.
Collapse
Affiliation(s)
- Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiyao Wang
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Tingting Wu
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Boxuan Li
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Tianqi Liu
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Rong Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
30
|
He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 2015; 20:9183-213. [PMID: 26007179 PMCID: PMC6272784 DOI: 10.3390/molecules20059183] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.
Collapse
Affiliation(s)
- Yan He
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Yuan Yue
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Xi Zheng
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Kun Zhang
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Shaohua Chen
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510030, China.
| | - Zhiyun Du
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, 232 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
31
|
Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou J, Yang L, Chen Z, Hann SS. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. J Exp Clin Cancer Res 2015; 34:46. [PMID: 25971429 PMCID: PMC4446835 DOI: 10.1186/s13046-015-0168-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/08/2015] [Indexed: 11/17/2022] Open
Abstract
Background Prostate cancer is one of the most common malignancies in men. The mucin 1 (MUC1) heterodimeric oncoprotein is overexpressed in human prostate cancers with aggressive pathologic and clinical features, resulting in a poor outcome. However, the functional role for MUC1 C-terminal domain (MUC1-C) in androgen-independent prostate cancer occurrence and development has remained unclear. Methods Cell viability was measured by MTT assays. Western blot analysis was performed to measure the phosphorylation and protein expression of SAPK/JNK and ERK1/2, and MUC1-C, NF-κB subunit p65 and p50. Exogenous expression of MUC1-C, NF-κB subunit p65 was carried out by transient and electroporated transfection assays. Results We showed that curcumin inhibited the growth of androgen-independent prostate cancer cells and a synergy was observed in the presence of curcumin and bicalutamide, the androgen receptor antagonist. To further explore the potential mechanism underlining this, we found that curcumin increased the phosphorylation of ERK1/2 and SAPK/JNK, which was enhanced by bicalutamide. In addition, curcumin reduced the protein expression of MUC1-C and NF-κB subunit p65, which were abrogated in the presence of the inhibitors of MEK/ERK1/2 (PD98059) and SAPK/JNK (SP60015). A further reduction was observed in the combination of curcumin with bicalutamide. Moreover, while exogenous expression of MUC1-C had little effect on curcumin-reduced p65, the overexpression of p65 reversed the effect of curcumin on MUC1-C protein expression suggesting that p65 is upstream of MUC1-C. Intriguingly, we showed that exogenous expression of MUC1-C feedback diminished the effect of curcumin on phosphorylation of ERK1/2 and SAPK/JNK, and antagonized the effect of curcumin on cell growth. Conclusion Our results show that curcumin inhibits the growth of androgen-independent prostate cancer cells through ERK1/2- and SAPK/JNK-mediated inhibition of p65, followed by reducing expression of MUC1-C protein. More importantly, there are synergistic effects of curcumin and bicalutamide. The negative feedback regulatory loop of MUC1-C to ERK1/2 and SAPK/JNK further demonstrates the role of MUC1-C that contributes to the overall responses of curcumin. This study unveils the potential molecular mechanism by which combination of curcumin with bicalutamide enhances the growth inhibition of androgen-independent prostate cancer cells.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - SongTao Xiang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - QiouHong Zhang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - JianFu Zhou
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - ZhiQiang Chen
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Higher Education Mega Center, Panyu District, Guangdong Provincial Hospital of Chinese Medicine, No. 55, Neihuan West Road, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
32
|
Roles of autophagy induced by natural compounds in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121826. [PMID: 25821782 PMCID: PMC4364006 DOI: 10.1155/2015/121826] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment.
Prostate cancer (PCa) is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.
Collapse
|
33
|
Prasad RG, Choi YH, Kim GY. Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB. Biomol Ther (Seoul) 2015; 23:110-8. [PMID: 25767678 PMCID: PMC4354311 DOI: 10.4062/biomolther.2015.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 11/17/2022] Open
Abstract
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-051, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
34
|
Lewinska A, Wnuk M, Grabowska W, Zabek T, Semik E, Sikora E, Bielak-Zmijewska A. Curcumin induces oxidation-dependent cell cycle arrest mediated by SIRT7 inhibition of rDNA transcription in human aortic smooth muscle cells. Toxicol Lett 2015; 233:227-38. [DOI: 10.1016/j.toxlet.2015.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
35
|
Waghela BN, Sharma A, Dhumale S, Pandey SM, Pathak C. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PLoS One 2015; 10:e0117526. [PMID: 25692854 PMCID: PMC4334672 DOI: 10.1371/journal.pone.0117526] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy.
Collapse
Affiliation(s)
- Bhargav N. Waghela
- Department of Cell Biology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Anupama Sharma
- Department of Cell Biology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Suhashini Dhumale
- Department of Cell Biology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Chandramani Pathak
- Department of Cell Biology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
- * E-mail:
| |
Collapse
|
36
|
Evaluation of two novel antioxidants with differential effects on curcumin-induced apoptosis in C2 skeletal myoblasts; involvement of JNKs. Bioorg Med Chem 2014; 23:390-400. [PMID: 25577709 DOI: 10.1016/j.bmc.2014.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023]
Abstract
Excessive levels of reactive oxygen species (ROS) result in numerous pathologies including muscle disorders. In essence, skeletal muscle performance of daily activities can be severely affected by the redox imbalances occurring after muscular injuries, surgery, atrophy due to immobilization, dystrophy or eccentric muscle contraction. Therefore, research on the potential beneficial impact of antioxidants is of outmost importance. In this context, aiming at further exploring the mechanisms of action of our newly synthesized antioxidant compounds (AK1 and AK2) in a skeletal muscle experimental setting, we initially investigated their scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and subsequently assessed their effect on the viability of C2 skeletal myoblasts in the presence of two pro-oxidants: H2O2 and curcumin (MTT assay). Interestingly, while both compounds reversed the detrimental effect of H2O2, only AK2 was cytoprotective in curcumin-treated C2 cells. We next confirmed the immediate activation of extracellular signal-regulated kinases (ERKs) and the more delayed activation profile of c-Jun NH2-terminal kinases (JNKs) in C2 skeletal myoblasts exposed to curcumin, by Western blotting. In correlation with the aforementioned results, only AK2 blocked the curcumin-induced activation of JNKs pathway. Furthermore, JNKs were revealed to mediate curcumin-induced apoptosis in C2 cells and only AK2 to effectively suppress it (by detecting its effect on poly(ADP-ribose) polymerase fragmentation). Overall, we have shown that two similar in structure novel antioxidants confer differential effects on C2 skeletal myoblasts viability under oxidative stress conditions. This result may be attributed to these antioxidants respective diverse mode of interaction with the signaling effectors involved in the observed responses. Future studies should further evaluate the mechanism of action of these compounds in order to support their potential application in therapeutic protocols against ROS-related muscle disorders.
Collapse
|