1
|
Wu KL, Martinez-Paniagua M, Reichel K, Menon PS, Deo S, Roysam B, Varadarajan N. Automated detection of apoptotic bodies and cells in label-free time-lapse high-throughput video microscopy using deep convolutional neural networks. Bioinformatics 2023; 39:btad584. [PMID: 37773981 PMCID: PMC10563152 DOI: 10.1093/bioinformatics/btad584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
MOTIVATION Reliable label-free methods are needed for detecting and profiling apoptotic events in time-lapse cell-cell interaction assays. Prior studies relied on fluorescent markers of apoptosis, e.g. Annexin-V, that provide an inconsistent and late indication of apoptotic onset for human melanoma cells. Our motivation is to improve the detection of apoptosis by directly detecting apoptotic bodies in a label-free manner. RESULTS Our trained ResNet50 network identified nanowells containing apoptotic bodies with 92% accuracy and predicted the onset of apoptosis with an error of one frame (5 min/frame). Our apoptotic body segmentation yielded an IoU accuracy of 75%, allowing associative identification of apoptotic cells. Our method detected apoptosis events, 70% of which were not detected by Annexin-V staining. AVAILABILITY AND IMPLEMENTATION Open-source code and sample data provided at https://github.com/kwu14victor/ApoBDproject.
Collapse
Affiliation(s)
- Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Prashant S Menon
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Shravani Deo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
2
|
Oh K, Chi DY. Direct Fluorination Strategy for the Synthesis of Fluorine‐18 Labeled Oligopeptide—[
18
F
]
ApoPep
‐7. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keumrok Oh
- Department of Chemistry Sogang University 35 Baekbeomro Mapogu, Seoul 04107 Korea
| | - Dae Yoon Chi
- Department of Chemistry Sogang University 35 Baekbeomro Mapogu, Seoul 04107 Korea
| |
Collapse
|
3
|
Zhao C, Yang Y, An Y, Yang B, Li P. Cardioprotective role of phyllanthin against myocardial ischemia-reperfusion injury by alleviating oxidative stress and inflammation with increased adenosine triphosphate levels in the mice model. ENVIRONMENTAL TOXICOLOGY 2021; 36:33-44. [PMID: 32798296 DOI: 10.1002/tox.23008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ischemic heart disease is an imperative cause of high morbidity and mortality globally. The cardiac ischemia/reperfusion damage occur in both reperfusion and ischemia. OBJECTIVE In this exploration, we have planned to examine the cardio-protective action of phyllanthin against the myocardial ischemic-reperfusion injury in mice. MATERIALS AND METHODS The myocardial ischemic reperfusion injury (MI-RI) stimulated via coronary artery occlusion, followed by the 10 mg/kg of phyllanthin treatment. The serum cardiac markers and pro-inflammatory markers level was investigated by using the assay kits. The expressions of oxidative stress and inflammatory markers level were investigated by immunohistochemical analysis. Lipid peroxidation, antioxidant enzymes, and ATPase levels level was examined by standard methods. The expression of oxidative stress markers were inspected by the reverse transcription polymerase chain reaction technique. The heart histology was investigated microscopically. RESULTS The phyllanthin treatment increased the body weight, and heart weight also diminished the infarct size in the MI/RI mice. Cardiac markers status was diminished and the blood pressure markers were augmented by the phyllanthin. Histological analysis revealed the protective role of phyllanthin. Suppressed lipid peroxidation and enhanced antioxidant enzymes were noted in the phyllanthin treated mice MI-RI mice. Phyllanthin appreciably suppressed the pro-inflammatory regulators that is, NF-αB p65, IL-6, IL-1β, and TNF-α and enhanced the antioxidant marker expressions. ATPase levels were improved by the phyllanthin in the MI-RI mice. CONCLUSION These novel findings were confirmed the therapeutic role of phyllanthin against the MI-RI in mice. Hence, it can be a promising agent to treat the MI-RI induced cardiac dysfunction.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yufei Yang
- College of Basic Medicine, Qingdao Binhai University, Qingdao, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Mosayebnia M, Hajiramezanali M, Shahhosseini S. Radiolabeled Peptides for Molecular Imaging of Apoptosis. Curr Med Chem 2020; 27:7064-7089. [PMID: 32532184 DOI: 10.2174/0929867327666200612152655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
Abstract
Apoptosis is a regulated cell death induced by extrinsic and intrinsic stimulants. Tracking of apoptosis provides an opportunity for the assessment of cardiovascular and neurodegenerative diseases as well as monitoring of cancer therapy at early stages. There are some key mediators in apoptosis cascade, which could be considered as specific targets for delivering imaging or therapeutic agents. The targeted radioisotope-based imaging agents are able to sensitively detect the physiological signal pathways which make them suitable for apoptosis imaging at a single-cell level. Radiopeptides take advantage of both the high sensitivity of nuclear imaging modalities and favorable features of peptide scaffolds. The aim of this study is to review the characteristics of those radiopeptides targeting apoptosis with different mechanisms.
Collapse
Affiliation(s)
- Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
6
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
7
|
Vadevoo SMP, Gurung S, Khan F, Haque ME, Gunassekaran GR, Chi L, Permpoon U, Lee B. Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Arch Pharm Res 2019; 42:150-158. [DOI: 10.1007/s12272-019-01125-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
|
8
|
SPECT Imaging of Treatment-Related Tumor Necrosis Using Technetium-99m-Labeled Rhein. Mol Imaging Biol 2018; 21:660-668. [DOI: 10.1007/s11307-018-1285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Feng L, Liu W, Yang J, Wang Q, Wen S. Effect of Hexadecyl Azelaoyl Phosphatidylcholine on Cardiomyocyte Apoptosis in Myocardial Ischemia-Reperfusion Injury: A Hypothesis. Med Sci Monit 2018; 24:2661-2667. [PMID: 29706617 PMCID: PMC5949054 DOI: 10.12659/msm.907578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reperfusion after myocardial ischemia can induce cardiomyocyte death, known as myocardial reperfusion injury. The pathophysiology of the process of reperfusion suggests the confluence multiple pathways. Recent studies have focused on the inflammatory response, which is considered to be the main mechanism during the process of myocardial ischemia-reperfusion injury and can cause cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors gamma activated by endogenous ligands and exogenous ligand can decrease the inflammatory response in cardiomyocytes. Thiazolidinediones are synthetic, high-affinity, selective ligands for peroxisome proliferator-activated receptors gamma, and can inhibit the inflammatory response, decrease myocardial infarct size, and protect cardiac function. However, thiazolidinediones, including rosiglitazone and pioglitazone, can also contribute to adverse cardiovascular events such as congestive heart failure. Therefore, there are some limitations to the use of thiazolidinediones. Most endogenous ligands were of low affinity until hexadecyl azelaoyl phosphatidylcholine was identified as a high-affinity ligand and agonist for peroxisome proliferator-activated receptors gamma. Hexadecyl azelaoyl phosphatidylcholine binds recombinant peroxisome proliferator-activated receptors with an affinity (Kd(app) ≈40 nM) which is equivalent to rosiglitazone. Therefore, hexadecyl azelaoyl phosphatidylcholine is a specific peroxisome proliferator-activated receptors gamma agonist. Given these findings, we hypothesized that the use of hexadecyl azelaoyl phosphatidylcholine can activate the peroxisome proliferator-activated receptors gamma signal pathways and prevent the inflammatory response process of myocardial ischemia-reperfusion injury, with reduced cardiomyocyte apoptosis and death.
Collapse
Affiliation(s)
- Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Wennan Liu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Qing Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shiwu Wen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
10
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Preclinical Evaluation of Radioiodinated Hoechst 33258 for Early Prediction of Tumor Response to Treatment of Vascular-Disrupting Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5237950. [PMID: 29681781 PMCID: PMC5846351 DOI: 10.1155/2018/5237950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the use of 131I-Hoechst 33258 (131I-H33258) for early prediction of tumor response to vascular-disrupting agents (VDAs) with combretastatin-A4 phosphate (CA4P) as a representative. Necrosis avidity of 131I-H33258 was evaluated in mouse models with muscle necrosis and blocking was used to confirm the tracer specificity. Therapy response was evaluated by 131I-H33258 SPECT/CT imaging 24 h after CA4P therapy in W256 tumor-bearing rats. Radiotracer uptake in tumors was validated ex vivo using γ-counting, autoradiography, and histopathological staining. Results showed that 131I-H33258 had predominant necrosis avidity and could specifically bind to necrotic tissue. SPECT/CT imaging demonstrated that an obvious “hot spot” could be observed in the CA4P-treated tumor. Ex vivo γ-counting revealed 131I-H33258 uptake in tumors was increased 2.8-fold in rats treated with CA4P relative to rats treated with vehicle. Autoradiography and corresponding H&E staining suggested that 131I-H33258 was mainly localized in necrotic tumor area and the higher overall uptake in the treated tumors was attributed to the increased necrosis. These results suggest that 131I-H33258 can be used to image induction of cell necrosis 24 h after CA4P therapy, which support further molecular design of probes based on scaffold H33258 for monitoring of tumor response to VDAs treatment.
Collapse
|
12
|
Zhang P, Zhuang R, Wang X, Liu H, Li J, Su X, Chen X, Zhang X. Highly Efficient and Stable Strain-Release Radioiodination for Thiol Chemoselective Bioconjugation. Bioconjug Chem 2018; 29:467-472. [PMID: 29376327 DOI: 10.1021/acs.bioconjchem.7b00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a novel thiol selective radioiodination method based on strain-release reaction. A new heterobifunctional radioiodination agent which has very good thiol selectivity and excellent stability with high radiolabeling yield was synthesized, characterized, and applied successfully for thiol-contained peptide labeling.
Collapse
Affiliation(s)
- Pu Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Rongqiang Zhuang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Xiangyu Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Huanhuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Jindian Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated of Xiamen University , Xiamen 361004, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (USA) , Bethesda, Maryland 20892, United States
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| |
Collapse
|
13
|
An optical probe for detecting chondrocyte apoptosis in response to mechanical injury. Sci Rep 2017; 7:10906. [PMID: 28883614 PMCID: PMC5589871 DOI: 10.1038/s41598-017-10653-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/10/2017] [Indexed: 11/08/2022] Open
Abstract
Cartilage injury induced by acute excessive contact stress is common and mostly affects young adult. Although early detection of cartilage injury may prevent serious and lifelong arthritic complications, early detection and treatment is not possible due to the lack of a reliable detection method. Since chondrocyte injury and subsequent cell death are the early signs of cartilage injury, it is likely that cartilage cell apoptosis can be used to predict the extent of injury. To test this hypothesis, a near infrared probe was fabricated to have high affinity to apoptotic cells. In vitro tests show that this apoptosis probe has low toxicity, high specificity, and high affinity to apoptotic cells. In addition, there is a positive relationship between apoptotic cell numbers and fluorescence intensities. Using a mouse xiphoid injury model, we found significant accumulation of the apoptosis probes at the injured xiphoid cartilage site. There was also a positive correlation between probe accumulation and the number of apoptotic chondrocytes within the injured xiphoid cartilage, which was confirmed by TUNEL assay. The results support that the apoptosis probes may serve as a powerful tool to monitor the extent of mechanical force-induced cartilage injury in vivo.
Collapse
|
14
|
Zhang X, Liu F, Slikker W, Wang C, Paule MG. Minimally invasive biomarkers of general anesthetic-induced developmental neurotoxicity. Neurotoxicol Teratol 2016; 60:95-101. [PMID: 27784630 DOI: 10.1016/j.ntt.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
The association of general anesthesia with developmental neurotoxicity, while nearly impossible to study in pediatric populations, is clearly demonstrable in a variety of animal models from rodents to nonhuman primates. Nearly all general anesthetics tested have been shown to cause abnormal brain cell death in animals when administered during periods of rapid brain growth. The ability to repeatedly assess in the same subjects adverse effects induced by general anesthetics provides significant power to address the time course of important events associated with exposures. Minimally-invasive procedures provide the opportunity to bridge the preclinical/clinical gap by providing the means to more easily translate findings from the animal laboratory to the human clinic. Positron Emission Tomography or PET is a tool with great promise for realizing this goal. PET for small animals (microPET) is providing valuable data on the life cycle of general anesthetic induced neurotoxicity. PET radioligands (annexin V and DFNSH) targeting apoptotic processes have demonstrated that a single bout of general anesthesia effected during a vulnerable period of CNS development can result in prolonged apoptotic signals lasting for several weeks in the rat. A marker of cellular proliferation (FLT) has demonstrated in rodents that general anesthesia-induced inhibition of neural progenitor cell proliferation is evident when assessed a full 2weeks after exposure. Activated glia express Translocator Protein (TSPO) which can be used as a marker of presumed neuroinflammatory processes and a PET ligand for the TSPO (FEPPA) has been used to track this process in both rat and nonhuman primate models. It has been shown that single bouts of general anesthesia can result in elevated TSPO expression lasting for over a week. These examples demonstrate the utility of specific PET tracers to inform, in a minimally-invasive fashion, processes associated with general anesthesia-induced developmental neurotoxicity. The fact that PET procedures are also used clinically suggests an opportunity to confirm in humans what has been repeatedly observed in animals.
Collapse
|