1
|
Li J, Liu J, Tang Y, Zhang H, Zhang Y, Zha X, Zhao X. Role of C/EBP Homologous Protein (CHOP) and Nupr1 Interaction in Endoplasmic Reticulum Stress-Induced Apoptosis of Lens Epithelial Cells. Mol Biotechnol 2025; 67:1628-1640. [PMID: 38771421 PMCID: PMC11928426 DOI: 10.1007/s12033-024-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL. Nupr1 expression was detected by RT-qPCR. The expressions of CHOP, Nupr1, apoptosis-related protein, and ERS-related protein were detected by Western blot. DCFH-DA probe was used to detect cell ROS. The SOD, GSH-PX, and MDA contents were detected by the kit. Co-IP was used to detect the interaction between CHOP and Nupr1. The morphology of the lens was detected by HE staining. The result shows that Tunicamycin (TU) can induce endoplasmic reticulum stress and apoptosis in LEC in a concentration-dependent manner. TU induction leads to the occurrence of CHOP nuclear translocation. Overexpression of CHOP can further enhance the inhibitory effect of TU on LEC proliferation and the promotion of apoptosis, while knockdown of CHOP has the opposite effect. CHOP and Nupr1 are interacting proteins, and knockdown of Nupr1 or addition of Nupr1 inhibitor ZZW-115 can reverse the effects of TU and overexpression of CHOP, respectively. It has been observed in animal experiments that treatment with oe-CHOP can further aggravate the pathological lesions of the rat lens, while ZZW-115 can reverse the effect of oe-CHOP to a certain extent and improve the lesions of the rat lens. Overall, CHOP interacts with Nupr1 to regulate apoptosis caused by ERS and mediate cataract progression in rats, and this study provides a new potential therapeutic target for the treatment of cataract.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Junyi Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yongying Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| | - Xueying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
2
|
Lin IL, Lin YT, Chang YC, Kondapuram SK, Lin KH, Chen PC, Kuo CY, Coumar MS, Cheung CHA. The SMAC mimetic GDC-0152 is a direct ABCB1-ATPase activity modulator and BIRC5 expression suppressor in cancer cells. Toxicol Appl Pharmacol 2024; 485:116888. [PMID: 38452945 DOI: 10.1016/j.taap.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.
Collapse
Affiliation(s)
- I-Li Lin
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Yu-Ting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University 701, Tainan, Taiwan
| | - Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Kai-Hsuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University 701, Tainan, Taiwan
| | - Pin-Chen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University 701, Tainan, Taiwan.
| |
Collapse
|
3
|
Ou D, Ni D, Li R, Jiang X, Chen X, Li H. Galectin‑1 alleviates myocardial ischemia‑reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes. Exp Ther Med 2021; 23:143. [PMID: 35069824 PMCID: PMC8756402 DOI: 10.3892/etm.2021.11066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dengke Ou
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Dan Ni
- Department of Nuclear Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Rong Li
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Xiaobo Jiang
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Xiaoxiao Chen
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Hongfei Li
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
4
|
Ma J, Chen K. The role of Irisin in multiorgan protection. Mol Biol Rep 2021; 48:763-772. [PMID: 33389537 DOI: 10.1007/s11033-020-06067-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Physical exercise is an effective strategy for improving human health. Various organs, including the heart, lung and kidney, can benefit from exercise. However, the underlying molecular mechanisms by which exercise protects organs remain unknown. Irisin, a myokine secreted from muscle in response to exercise, has attracted increased attention from researchers. The role of irisin in multiorgan protection has been gradually revealed, and this muscle-derived circulating factor is regarded as an essential bridge linking exercise and organ health. The mechanisms by which irisin protects diverse organs are different. Here, we review the research progress on the multiorgan protective effects of irisin and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, People's Republic of China
| | - Ken Chen
- Department of Cardiology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, People's Republic of China. .,Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing, 400062, People's Republic of China.
| |
Collapse
|
5
|
Tong D, Ma Z, Su P, Wang S, Xu Y, Zhang LM, Wu Z, Liu K, Zhao P. Sevoflurane-Induced Neuroapoptosis in Rat Dentate Gyrus Is Activated by Autophagy Through NF-κB Signaling on the Late-Stage Progenitor Granule Cells. Front Cell Neurosci 2020; 14:590577. [PMID: 33384584 PMCID: PMC7769878 DOI: 10.3389/fncel.2020.590577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The mechanisms by which exposure of the late-stage progenitor cells to the anesthesia sevoflurane alters their differentiation are not known. We seek to query whether the effects of sevoflurane on late-stage progenitor cells might be regulated by apoptosis and/or autophagy. METHODS To address the short-term impact of sevoflurane exposure on granule cell differentiation, we used 5-bromo-2-deoxyuridine (BrdU) to identify the labeled late-stage progenitor granule cells. Male or female rats were exposed to 3% sevoflurane for 4 h when the labeled granule cells were 2 weeks old. Differentiation of the BrdU-labeled granule cells was quantified 4 and 7 days after exposure by double immunofluorescence. The expression of apoptosis and autophagy in hippocampal dentate gyrus (DG) was determined by western blot and immunofluorescence. Western blot for the expression of NF-κB was used to evaluate the mechanism. Morris water maze (MWM) test was performed to detect cognitive function in the rats on postnatal 28-33 days. RESULTS Exposure to sevoflurane decreased the differentiation of the BrdU-labeled late-stage progenitor granule cells, but increased the expression of caspase-3, autophagy, and phosphorylated-P65 in the hippocampus of juvenile rats and resulted in cognitive deficiency. These damaging effects of sevoflurane could be mitigated by inhibitors of autophagy, apoptosis, and NF-κB. The increased apoptosis could be alleviated by pretreatment with the autophagy inhibitor 3-MA, and the increased autophagy and apoptosis could be reduced by pretreatment with NF-κB inhibitor BAY 11-7085. CONCLUSION These findings suggest that a single, prolonged sevoflurane exposure could impair the differentiation of late-stage progenitor granule cells in hippocampal DG and cause cognitive deficits possibly via apoptosis activated by autophagy through NF-κB signaling. Our results do not preclude the possibility that the affected differentiation and functional deficits may be caused by depletion of the progenitors pool.
Collapse
Affiliation(s)
- Dongyi Tong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongliang Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Benxi, China
| | - Shuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kun Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|