1
|
Riera-Ferrer E, Piazzon MC, Del Pozo R, Palenzuela O, Estensoro I, Sitjà-Bobadilla A. A bloody interaction: plasma proteomics reveals gilthead sea bream (Sparus aurata) impairment caused by Sparicotyle chrysophrii. PARASITES & VECTORS 2022; 15:322. [PMID: 36088326 PMCID: PMC9463799 DOI: 10.1186/s13071-022-05441-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Background Sparicotylosis is an enzootic parasitic disease that is well established across the Mediterranean Sea. It is caused by the polyopisthocotylean monogenean Sparicotyle chrysophrii and affects the gills of gilthead sea bream (GSB; Sparus aurata). Current disease management, mitigation and treatment strategies are limited against sparicotylosis. To successfully develop more efficient therapeutic strategies against this disease, understanding which molecular mechanisms and metabolic pathways are altered in the host is critical. This study aims to elucidate how S. chrysophrii infection modulates the plasma proteome of GSB and to identify the main altered biological processes involved. Methods Experimental infections were conducted in a recirculating aquaculture system (RAS) in which naïve recipient GSB ([R]; 70 g; n = 50) were exposed to effluent water from S. chrysophrii-infected GSB (98 g; n = 50). An additional tank containing unexposed naïve fish (control [C]; 70 g; n = 50) was maintained in parallel, but with the open water flow disconnected from the RAS. Haematological and infection parameters from sampled C and R fish were recorded for 10 weeks. Plasma samples from R fish were categorised into three different groups according to their infection intensity, which was based on the number of worms fish−1: low (L: 1–50), medium (51–100) and high (H: > 100). Five plasma samples from each category and five C samples were selected and subjected to a SWATH-MS proteome analysis. Additional assays on haemoglobin, cholesterol and the lytic activity of the alternative complement pathway were performed to validate the proteome analysis findings. Results The discriminant analysis of plasma protein abundance revealed a clear separation into three groups (H, M/L and C). A pathway analysis was performed with the differentially quantified proteins, indicating that the parasitic infection mainly affected pathways related to haemostasis, the immune system and lipid metabolism and transport. Twenty-two proteins were significantly correlated with infection intensity, highlighting the importance of apolipoproteins, globins and complement component 3. Validation assays of blood and plasma (haemoglobin, cholesterol and lytic activity of alternative complement pathway) confirmed these correlations. Conclusions Sparicotylosis profoundly alters the haemostasis, the innate immune system and the lipid metabolism and transport in GSB. This study gives a crucial global overview of the pathogenesis of sparicotylosis and highlights new targets for further research. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05441-1.
Collapse
|
2
|
Seyid M, Tiftikcioglu Y, Erdem M, Akdemir O, Tatar BE, Uyanıkgil Y, Ercan G. The Effect of Ceruloplasmin Against Ischemia-Reperfusion Injury in Epigastric Island Flap in Rats. J Surg Res 2021; 267:627-635. [PMID: 34273792 DOI: 10.1016/j.jss.2021.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Flap surgery is frequently used in plastic surgery to close tissue defects. Ischemia-reperfusion (I/R) injury is a significant problem resulting in partial or total flap necrosis. This study aimed to investigate the effect of ceruloplasmin on I/R injury in epigastric island flaps in rats. MATERIALS AND METHODS A total of 32 male Sprague-Dawley rats were divided into four groups with eight rats in each group: The flap was not elevated in Group I; the flap was elevated without ischemia or any application in Group II, after the intraperitoneal saline and ceruloplasmin application the flaps were elevated and ischemia was created in group III-IV, respectively. Bilateral epigastric artery flap was elevated in all groups except Group I. After 6 h of ischemia, the flap was reperfused and inset. Samples were taken from the right and left side of the flap area in other groups at the postoperative 24th h for biochemical analysis (catalase and malondialdehyde-MDA) and the seventh postoperative day for histopathological analysis (Modified Verhofstad score and epidermal thicknesses), respectively. Image analysis for necrosis areas was performed on photos taken on the 7th d. RESULTS Catalase level was significantly higher in Group IV.(0.15 ± 0.04 U/mg protein) (P < 0.05) Necrosis area percentage(14.4% ± 3.3%),MDA(3.6 ± 0.9 nmol/mg protein), edema(3), necrosis(2.75), and polymorphonuclear leukocyte infiltration(2.87) scores were significantly higher in group III.(P < 0.05). Fibroblast proliferation, collagen density (0.25), vascular density (0.25) scores and epidermal thickness (15.68 µm,) was significantly lower in group III. (P < 0.05) CONCLUSIONS: Our study demonstrated that ceruloplasmin application before ischemia reduced I/R injury in epigastric island flaps in rats.
Collapse
Affiliation(s)
- Mircafer Seyid
- Baku Medical Plaza, Department of Plastic Surgery, Baku, Azerbaijan.
| | - Yigit Tiftikcioglu
- Ege University Faculty of Medicine, Department of Plastic Surgery, Izmir, Turkey
| | - Mehmet Erdem
- University of Health Sciences, Bagcılar Training and Research Hospital, Department of Plastic Surgery, Istanbul, Turkey
| | - Ovunc Akdemir
- Esenyurt University, Department of Plastic Surgery, Istanbul, Turkey
| | - Burak Ergün Tatar
- University of Health Sciences, Bagcılar Training and Research Hospital, Department of Plastic Surgery
| | - Yigit Uyanıkgil
- Ege University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Gülinnaz Ercan
- Ege University Faculty of Medicine, Department of Biochemistry, Izmir Turkey
| |
Collapse
|
3
|
Furtado JD, Yamamoto R, Melchior JT, Andraski AB, Gamez-Guerrero M, Mulcahy P, He Z, Cai T, Davidson WS, Sacks FM. Distinct Proteomic Signatures in 16 HDL (High-Density Lipoprotein) Subspecies. Arterioscler Thromb Vasc Biol 2019; 38:2827-2842. [PMID: 30571168 DOI: 10.1161/atvbaha.118.311607] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- HDL (high-density lipoprotein) in plasma is a heterogeneous group of lipoproteins typically containing apo AI as the principal protein. Most HDLs contain additional proteins from a palate of nearly 100 HDL-associated polypeptides. We hypothesized that some of these proteins define distinct and stable apo AI HDL subspecies with unique proteomes that drive function and associations with disease. Approach and Results- We produced 17 plasma pools from 80 normolipidemic human participants (32 men, 48 women; aged 21-66 years). Using immunoaffinity isolation techniques, we isolated apo AI containing species from plasma and then used antibodies to 16 additional HDL protein components to isolate compositional subspecies. We characterized previously described HDL subspecies containing apo AII, apo CIII, and apo E; and 13 novel HDL subspecies defined by presence of apo AIV, apo CI, apo CII, apo J, α-1-antitrypsin, α-2-macroglobulin, plasminogen, fibrinogen, ceruloplasmin, haptoglobin, paraoxonase-1, apo LI, or complement C3. The novel species ranged in abundance from 1% to 18% of total plasma apo AI. Their concentrations were stable over time as demonstrated by intraclass correlations in repeated sampling from the same participants over 3 to 24 months (0.33-0.86; mean 0.62). Some proteomes of the subspecies relative to total HDL were strongly correlated, often among subspecies defined by similar functions: lipid metabolism, hemostasis, antioxidant, or anti-inflammatory. Permutation analysis showed that the proteomes of 12 of the 16 subspecies differed significantly from that of total HDL. Conclusions- Taken together, correlation and permutation analyses support speciation of HDL. Functional studies of these novel subspecies and determination of their relation to diseases may provide new avenues to understand the HDL system of lipoproteins.
Collapse
Affiliation(s)
- Jeremy D Furtado
- From the Department of Nutrition (J.D.F., R.Y., A.B.A., M.G.-G., P.M., F.M.S.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Rain Yamamoto
- From the Department of Nutrition (J.D.F., R.Y., A.B.A., M.G.-G., P.M., F.M.S.), Harvard T. H. Chan School of Public Health, Boston, MA.,Food and Agriculture Organization, United Nations (R.Y.)
| | - John T Melchior
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (J.T.M., W.S.D.)
| | - Allison B Andraski
- From the Department of Nutrition (J.D.F., R.Y., A.B.A., M.G.-G., P.M., F.M.S.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Maria Gamez-Guerrero
- From the Department of Nutrition (J.D.F., R.Y., A.B.A., M.G.-G., P.M., F.M.S.), Harvard T. H. Chan School of Public Health, Boston, MA.,Harpoon Therapeutics (M.G.-G.)
| | - Patrick Mulcahy
- From the Department of Nutrition (J.D.F., R.Y., A.B.A., M.G.-G., P.M., F.M.S.), Harvard T. H. Chan School of Public Health, Boston, MA.,Shire Pharmaceuticals (P.M.)
| | - Zeling He
- Department of Biostatistics (Z.H., T.C.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Tianxi Cai
- Department of Biostatistics (Z.H., T.C.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (J.T.M., W.S.D.)
| | - Frank M Sacks
- From the Department of Nutrition (J.D.F., R.Y., A.B.A., M.G.-G., P.M., F.M.S.), Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|