1
|
Li Z, Mu D, Liu C, Xin M, Fu S, Li S, Qi J, Wang Q, Luan J. The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio. Cytotechnology 2020; 72:203-215. [PMID: 31993890 PMCID: PMC7193004 DOI: 10.1007/s10616-020-00369-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
Effective harvesting procedure for adipose tissue is demanded by the affordable Good Manufacturing Practice-Compliant Production of clinical-grade adipose tissue-derived stem cells (hADSCs). Enzymatic digestion using collagenase is the most reliable method of adipose tissue-derived stem cells (hADSCs) isolation, while the optimized loading volume ratios of digestion to container during the shaking process of adipose tissue and collagenase mixture are still lacking. This study was conducted to determine the optimized loading volume ratio (mixture to container) for enzymatic digestion of Stromal/Stem Cells from lipoaspirate. Lipoaspirates were obtained from twelve women immediately after liposuction. Then tissue from each patient was divided into four groups according to different loading volume ratios in 50 ml centrifugal tube: 0.2 group, 0.4 group, 0.6 group, 0.8 group. Stromal vascular fractions (SVF) were obtained from each group, then total cell counts, viability and viable cell count were performed. hADSCs were harvested at passage (P) 2, whose morphologies, immunophenotypes, proliferation, and tri-differentiation abilities were compared. 0.4 loading volume ratio provided the highest cell yield, favorable viability and viable cell yield. The proliferation and triple differentiation ability of hADSCs obtained by 0.4 group was not inferior to that of other groups. Therefore, 0.4 may be the optimal loading volume ratio for hADSCs isolation from lipoaspirate by enzymatic digestion in current setting.
Collapse
Affiliation(s)
- Zifei Li
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Dali Mu
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Chunjun Liu
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Minqiang Xin
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Su Fu
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Shangshan Li
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Jun Qi
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China.
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 33 Ba-Da-Chu Rd, Shijingshan Dist, Beijing, 100144, People's Republic of China.
| |
Collapse
|
2
|
Simonacci F, Bertozzi N, Grieco MP, Raposio E. From liposuction to adipose-derived stem cells: indications and technique. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:197-208. [PMID: 31124996 PMCID: PMC6776224 DOI: 10.23750/abm.v90i2.6619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
Background and aim of the work: Adipose tissue is an organ of energy storage, an endocrine organ, a soft tissue filler and a cosmetically unnecessary tissue discarded by liposuction. Liposuction was designed to correct unaesthetic deposits of subcutaneous fat; it produces satisfactory silhouette contouring when performed by appropriately trained operators using properly selected technologies. However, from lipoaspirate it is possible to obtain autologous fat graft and adipose-derived stem cells (ASCs) for reconstructive surgery and regenerative medicine. Autologous fat transplantation uses include the correction of body contour, malformations and post-surgical outcomes. The regenerative properties of ASCs allow treating damaged tissues such as wounds, burns, scars and radiodermatitis. The aim of this study was to perform a literature review highlighting the crucial role of adipose tissue in plastic and reconstructive surgery, from liposuction to lipofilling and ASCs, exposing the indications, procedures and complications of these surgical techniques. Methods: Literature review of publications concerning liposuction, lipofilling and adipose-derived stem cells (ASCS). Results: The introduction of liposuction allowed the use of adipose tissue for many clinical uses. The adipose tissue filling properties have been highlighted by the advent of lipofilling. The regenerative properties evidence of autologous fat transplantation encouraged the research on the clinical use of ASCs. Conclusions: Adipose tissue is not only the main energy storage of our body but also an important source of stem cells that can be used in various fields of regenerative medicine and tissue engineering with encouraging results for the future. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Francesco Simonacci
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy and the Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy..
| | | | | | | |
Collapse
|
3
|
Simonacci F, Bertozzi N, Raposio E. Off-label use of adipose-derived stem cells. Ann Med Surg (Lond) 2017; 24:44-51. [PMID: 29123656 PMCID: PMC5671395 DOI: 10.1016/j.amsu.2017.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have a broad range of clinical applications. The ease of cell harvest and high yield with minimal donor-site morbidity makes adipose tissue an ideal source of stem cells. Further, the multi-lineage potential of these cells present significant opportunities within the field of tissue engineering, with studies successfully demonstrating their ability to produce a range of tissue types. Materials and methods Literature review of publications on the use of ASCs, in the context of current European and US regulations. Results According to European and US regulations, many clinical trials reported in literature to date could be considered off-label. Conclusion In Europe, clinical trials involving cultured ASCs and/or the use of collagenase, which causes changes in the structural and functional properties of stem cells, and/or ASCs application in non-homologous tissue, should be considered off-label. ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue. Adipose-derived stem cells hold enormous potential in different fields of regenerative medicine and stem cell therapy. According to European and US regulations, many clinical trials reported in literature could be considered off-label. In Europe, ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue.
Collapse
Affiliation(s)
- Francesco Simonacci
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
- Corresponding author. Department of Medicine and Surgery, Plastic Surgery Division, Cutaneous, Regenerative, Mininvasive and Plastic Surgery Unit, Parma University and Maggiore Hospital, Via Gramsci 14, 43126 Parma, Italy.Department of Medicine and SurgeryPlastic Surgery DivisionCutaneous, Regenerative, Mininvasive and Plastic Surgery UnitParma University and Maggiore HospitalVia Gramsci 14Parma43126Italy
| | - Nicolò Bertozzi
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Edoardo Raposio
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| |
Collapse
|
4
|
Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications. Ann Med Surg (Lond) 2017; 20:87-91. [PMID: 28736612 PMCID: PMC5508488 DOI: 10.1016/j.amsu.2017.07.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Background Adipose-derived stem cells are recognized as being an effective mesenchymal stem cell population with enormous potential in different fields of regenerative medicine and stem cell therapy. Although there is unanimous agreement on the harvesting procedure for adipose tissue, there are various protocols for adipose-derived stem cell isolation. The aim of this study was compare two methods of adipose-derived stem cells (ASCs) isolation, one based on a mechanical + enzymatic (ME) procedure and the other one exclusively mechanical (MC), in order to determine which one was superior to the other in accordance with current European and US legislation. Methods We reported step by step the two different methods ASCs isolation by comparing them. The ME procedure included the use of a centrifuge, an incubator and collagenase digestion solution (Collagenase NB 6 GMP Grade 17458; Serva GmbH, Heidelberg, Germany). The MC procedure was performed by vibrating shaker and centrifuge, both placed in a laminar airflow bench. Results With the ME procedure, a mean of 9.06 × 105 ASCs (range, 8.4 to 9.72 × 105; SD ± 6.6 × 105) was collected, corresponding to 25.9% of the total number of harvested cells. With the MC procedure, a mean of 5 × 105 ASCs (range: 4.0 to 6.0 × 105; SD, ±1 × 105) was collected, corresponding to 5% of the total number of harvested cells. Conclusion Based on data collected, from the same amount of lipoaspirate the ME procedure allowed to isolate a greater number of ASCs (25,9%) compared to the MC one (5%). Adipose-derived stem cells (ASCs) are effective mesenchymal stem cell population with enormous potential. In this study we compared two methods of adipose-derived stem cells (ASCs) isolation. Gathered data showed a greater amount of isolated ASCs by the ME procedure as compared to the MC one.
Collapse
|
5
|
Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E. Autologous fat transplantation for breast reconstruction: A literature review. Ann Med Surg (Lond) 2016; 12:94-100. [PMID: 27942383 PMCID: PMC5137333 DOI: 10.1016/j.amsu.2016.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The use of autologous fat transplantation to correct volume and contour defects, scars, and asymmetry after breast cancer surgery has increased over the past 20 years. Many developments and refinements in this technique have taken place in recent years, and several studies of the safety of lipofilling in the breast have been published. PRESENTATION OF CASE We performed a literature review of this technique, highlighting the crucial role of lipofilling in breast cancer reconstruction. DISCUSSION The efficacy of the fat graft transplantation depends on the experience and the technique used by the surgeon. The ASCs (adipose-derived stem cells) contained in the fat graft has proven to be crucial for breast reconstruction by mean the regeneration of tissue, through the chemotactic, paracrine, and immunomodulatory activities and their in situ differentiation. CONCLUSION The role of lipofilling for breast reconstruction could be more significant with the application of the findings of experimental research on tissue engineering and ASCs.
Collapse
Affiliation(s)
- Francesco Simonacci
- Department of Surgical Sciences, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Nicolò Bertozzi
- Department of Surgical Sciences, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Michele Pio Grieco
- Department of Surgical Sciences, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Eugenio Grignaffini
- Department of Surgical Sciences, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Edoardo Raposio
- Department of Surgical Sciences, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| |
Collapse
|