1
|
Wang X, Hu X, Xie Y, Zhao T, Liu L, Liu C. Spinal cord neural stem cells derived from human embryonic stem cells promote synapse regeneration and remyelination in spinal cord injury model rats. Eur J Neurosci 2024; 60:6920-6934. [PMID: 39543920 DOI: 10.1111/ejn.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Spinal cord injury (SCI) is a devastating injury that significantly impairs patients' quality of life. To date, there is no effective treatment to mitigate nerve tissue damage and restore neurological function. Neural stem cells (NSCs) derived from human embryonic stem cells (hESCs) are considered an important cell source for reconstructing damaged neural circuits and enabling axonal regeneration. Recent preclinical studies have shown that NSCs are potential therapeutic cell sources for neuroprotection and neuroregeneration in SCI animal models. NSCs can be derived from different sources and the spinal cord-specific NSCs have a higher potential for the regeneration of SCI. However, the long-term therapeutic efficacy of spinal cord-specific NSCs remains unproven. Here, we generated human spinal cord NSCs (hSCNSCs) and investigated the effects of transplanted hSCNSCs on the repair of the SCI model rats for 60 days. The transplanted hSCNSCs improved BBB scores, reduced the lesion area and promoted an increase in the number of Nestin-positive cells in the spinal cord compared to the model rats. Meanwhile, hSCNSC transplantation promoted the expression of synaptophysin, a synaptic signature protein and MBP, a protein associated with remyelination. Interestingly, BAF45D, a chromatin remodelling factor that contributes to the induction of hSCNSCs with region-specific spinal cord identity, were increased by the hSCNSC transplantation. In addition, conditioned medium derived from the hSCNSCs also promoted regenerative repair of the injured spinal cord. These results demonstrate that hSCNSCs may play a critical role in the regenerative repair of SCI.
Collapse
Affiliation(s)
- Xinmeng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xiangjue Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anqing Medical College, Anqing, China
| | - Yuxin Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tianyi Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Voronova AD, Stepanova OV, Chadin AV, Fursa GA, Karsuntseva EK, Valikhov MP, Semkina АS, Reshetov IV, Chekhonin VP. The Effect of Transplantation of Olfactory Ensheathing Cells on the Size of Posttraumatic Spinal Cord Cysts. Bull Exp Biol Med 2021; 171:122-126. [PMID: 34046791 DOI: 10.1007/s10517-021-05183-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 01/14/2023]
Abstract
We studied the effect of transplantation of ensheathing cells obtained from the olfactory mucosa of rats and humans on the size of posttraumatic spinal cord cysts. MRI examination showed that transplantation of these cells into experimental posttraumatic cysts of the spinal cord led to a significant decrease in cyst volume and even their complete disappearance in two animals receiving transplantation of rat or human cells. These findings attested to regenerative processes developing as a result of ensheathing cell transplantation. Further studies in this field will be aimed at elucidation of the mechanisms underlying spinal cord regeneration in the area of posttraumatic cysts after transplantation of ensheathing cells.
Collapse
Affiliation(s)
- A D Voronova
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - O V Stepanova
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Fursa
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - E K Karsuntseva
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - M P Valikhov
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - А S Semkina
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Preparation of Adhesion Culture of Neural Stem/Progenitor Cells of the Olfactory Mucosa for the Treatment of Spinal Cord Injuries. Bull Exp Biol Med 2020; 170:158-163. [PMID: 33231802 DOI: 10.1007/s10517-020-05023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 10/22/2022]
Abstract
In this work, an optimal protocol was developed for obtaining adhesion culture of neural stem/progenitor cells (NSPC) of rat olfactory mucosa. During the development of the protocol, the conditions for cell culturing on adhesion substrates fibronectin and laminin in DMEM/F-12 and neurobasal media with the same culture additives were compared. Cell proliferation was maximum during culturing on both substrates in the neurobasal medium. Using the immunofluorescence method, we found that culturing on fibronectin in the neurobasal medium ensured maximum (52.22%) content of nestin-positive cells in comparison with other culturing conditions. The highest percentage of βIII-tubulin-positive cells was detected in cultures growing on fibronectin in the neurobasal medium and in DMEM/F-12 (79.11 and 83.52%, respectively). Culturing in adhesion cultures in the neurobasal medium on fibronectin allowed obtaining cultures enriched with NSPC and neurons differentiating from them in a quantity sufficient for further transplantation. The developed protocol can be recommended for obtaining NPSC from human olfactory mucosa for the treatment of spinal cord injuries.
Collapse
|
4
|
Neural Stem/Progenitor Cells of Human Olfactory Mucosa for the Treatment of Chronic Spinal Cord Injuries. Bull Exp Biol Med 2020; 168:538-541. [PMID: 32157509 DOI: 10.1007/s10517-020-04749-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/18/2022]
Abstract
We studied the efficiency of transplantation of neural stem/progenitor cells from human olfactory mucosa in chronic spinal cord injury. Neural stem/progenitor cells were obtained by a protocol modified by us and transplanted to rats with spinal post-traumatic cysts. It was shown that transplantation of neural stem/progenitor cells from human olfactory lining improved motor activity of hind limbs in the recipient rat with spinal post-traumatic cysts (according to BBB scale).
Collapse
|
5
|
Qian K, Xu TY, Wang X, Ma T, Zhang KX, Yang K, Qian TD, Shi J, Li LX, Wang Z. Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries: a meta-analysis. Neural Regen Res 2020; 15:748-758. [PMID: 31638100 PMCID: PMC6975148 DOI: 10.4103/1673-5374.266915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective To judge the efficacies of neural stem cell (NSC) transplantation on functional recovery following contusion spinal cord injuries (SCIs). Data sources Studies in which NSCs were transplanted into a clinically relevant, standardized rat model of contusion SCI were identified by searching the PubMed, Embase and Cochrane databases, and the extracted data were analyzed by Stata 14.0. Data selection Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso, Beattie, and Bresnahan lo-comotor rating scale. Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups. Outcome measures The restoration of motor function was assessed by the Basso, Beattie, and Bresnahan locomotor rating scale. Results We identified 1756 non-duplicated papers by searching the aforementioned electronic databases, and 30 full-text articles met the inclusion criteria. A total of 37 studies reported in the 30 articles were included in the meta-analysis. The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs, to a moderate extent (pooled standardized mean difference (SMD) = 0.73; 95% confidence interval (CI): 0.47-1.00; P < 0.001). NSCs obtained from different donor species (rat: SMD = 0.74; 95% CI: 0.36-1.13; human: SMD = 0.78; 95% CI: 0.31-1.25), at different donor ages (fetal: SMD = 0.67; 95% CI: 0.43-0.92; adult: SMD = 0.86; 95% CI: 0.50-1.22) and from different origins (brain-derived: SMD = 0.59; 95% CI: 0.27-0.91; spinal cord-derived: SMD = 0.51; 95% CI: 0.22-0.79) had similar efficacies on improved functional recovery; however, adult induced pluripotent stem cell-derived NSCs showed no significant efficacies. Furthermore, the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery (SMD = 0.45; 95% CI: 0.21-0.70). However, shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies (acute: SMD = 1.22; 95% CI: 0.81-1.63; subacute: SMD = 0.75; 95% CI: 0.42-1.09). For chronic injuries, NSC implantation did not significantly improve functional recovery (SMD = 0.25; 95% CI: -0.16 to 0.65). Conclusion NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tuo-Ye Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi Wang
- Department of Intensive Care Unit, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Ma
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Kai-Xin Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province; Department of Neurosurgery, Huangshan City People's Hospital, Huangshan, Anhui Province, China
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng-Da Qian
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Neurosurgery, Jintan Hospital Affiliated to Jiangsu University, Jintan, Jiangsu Province, China
| | - Jing Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Xin Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Wang
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Ryabov SI, Zvyagintseva MA, Pavlovich ER, Smirnov VA, Grin’ AA, Chekhonin VP. Efficiency of Transplantation of Human Placental/Umbilical Blood Cells to Rats with Severe Spinal Cord Injury. Bull Exp Biol Med 2014; 157:85-8. [DOI: 10.1007/s10517-014-2498-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 10/25/2022]
|
7
|
Chekhonin VP, Lebedev SV, Volkov AI, Pavlov KA, Ter-Arutyunyants AA, Volgina NE, Savchenko EA, Grinenko NF, Lazarenko IP. Activation of expression of brain-derived neurotrophic factor at the site of implantation of allogenic and xenogenic neural stem (progenitor) cells in rats with ischemic cortical stroke. Bull Exp Biol Med 2012; 150:515-8. [PMID: 22268055 DOI: 10.1007/s10517-011-1180-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ischemic stroke was modeled in the sensorimotor zone of the brain cortex in adult rats. Rat embryonic nervous tissue, neural stem cells from human olfactory epithelium, and rat fibroblasts (cell control) were implanted into the peri-infarction area of rats of different groups immediately after stroke modeling. Expression of BDNF mRNA was analyzed 7 days after surgery by real-time PCR. BDNF expression in cell preparation before their implantation was minimum. The expression of BDNF mRNA increased by 5-6 times in the areas of implantation of rat fibroblasts and human olfactory epithelium and by 23 times in the area of implantation of rat embryonic nervous tissue compared to periinfarction areas without cell implantation. These findings confirm the possibility of realization of the therapeutic effects of neural stem cells via expression of trophic factors.
Collapse
Affiliation(s)
- V P Chekhonin
- V. P. Serbskii State Research Center of Social and Forensic Psychiatry, Russian State Medical University, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|