1
|
Kanda T, Saiki K, Kurumi H, Yoshida A, Ikebuchi Y, Sakaguchi T, Urabe S, Minami H, Yamaguchi N, Nakao K, Inoue H, Isomoto H. Docking Proteins Upregulate IL-1β Expression in Lower Esophageal Sphincter Muscle in Esophageal Achalasia. J Clin Med 2024; 13:3004. [PMID: 38792545 PMCID: PMC11122009 DOI: 10.3390/jcm13103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Esophageal achalasia is an archetypal esophageal motility disorder characterized by abnormal peristalsis of the esophageal body and impaired lower esophageal sphincter (LES) relaxation. Methods: In this study, the mRNA expression of docking proteins 1 and 2 (DOK1 and DOK2, respectively) were analyzed and the mechanisms underlying achalasia onset were investigated. Results:DOK1 and DOK2 mRNA levels significantly increased in the LES of patients with achalasia. Moreover, significant correlations were observed between IL-1β and DOK1, IL-1β and DOK2, ATG16L1 and DOK1, and HSV1-miR-H1-3p and DOK2 expression levels. However, a correlation between ATG16L1 and DOK2 or between HSV-miR-H1-3p and DOK1 expression was not observed. In addition, a positive correlation was observed between patient age and DOK1 expression. Microarray analysis revealed a significant decrease in the expression of hsa-miR-377-3p and miR-376a-3p in the LES muscle of patients with achalasia. Conclusions: These miRNAs possessed sequences targeting DOK. The upregulation of DOK1 and DOK2 expression induces IL-1β expression in the LES of achalasia patients, which may contribute to the development of esophageal motility disorder.
Collapse
Affiliation(s)
- Tsutomu Kanda
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Karen Saiki
- Division of Immunology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yoshida
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuichiro Ikebuchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
- Digestive Center, Showa University Koto-Toyosu Hospital, Tokyo 135-8577, Japan
| | - Takuki Sakaguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
- Digestive Center, Showa University Koto-Toyosu Hospital, Tokyo 135-8577, Japan
| | - Shigetoshi Urabe
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Hitomi Minami
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Haruhiro Inoue
- Digestive Center, Showa University Koto-Toyosu Hospital, Tokyo 135-8577, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
2
|
Mai Y, Ouyang Y, Qin Y, Jia C, McCoubrey LE, Basit AW, Nie Y, Jia Y, Yu L, Dou L, Deng W, Deng Y, Liu Y. Poly(lactic acid)-hyperbranched polyglycerol nanoparticles enhance bioadhesive treatment of esophageal disease and reduce systemic drug exposure. NANOSCALE 2022; 14:8418-8428. [PMID: 35639565 DOI: 10.1039/d2nr01846b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effective treatment of esophageal disease represents a significant unmet clinical need, as existing treatments often lead to unnecessary systemic drug exposure and suboptimal concentrations at the disease site. Here, surface-modified bioadhesive poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs), with an average 100-200 nm diameter, were developed for local and sustained esophageal drug delivery. BNPs showed significantly higher adhesion and permeation into ex vivo human and rat esophageal tissue than non-adhesive nanoparticles (NNPs) and had longer residence times within the rat esophagus in vivo. Incubation with human esophagus (Het-1A) cells confirmed BNPs' biocompatibility at clinically relevant concentrations. In a rat model of achalasia, nifedipine-loaded BNPs significantly enhanced esophageal drug exposure, increased therapeutic efficacy, and reduced systemic drug exposure compared to NNPs and free drug. The safety of BNPs was demonstrated by an absence of intestinal, hepatic, and splenic toxicity following administration. This study is the first to demonstrate the efficacy of BNPs for esophageal drug delivery and highlight their potential for improving the lives of patients suffering with esophageal conditions.
Collapse
Affiliation(s)
- Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yaqi Ouyang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yujia Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Liu Dou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Pang J, Borjeson TM, Muthupalani S, Ducore RM, Carr CA, Feng Y, Sullivan MP, Cristofaro V, Luo J, Lindstrom JM, Fox JG. Megaesophagus in a line of transgenic rats: a model of achalasia. Vet Pathol 2014; 51:1187-200. [PMID: 24457157 DOI: 10.1177/0300985813519136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Megaesophagus is defined as the abnormal enlargement or dilatation of the esophagus, characterized by a lack of normal contraction of the esophageal walls. This is called achalasia when associated with reduced or no relaxation of the lower esophageal sphincter (LES). To date, there are few naturally occurring models for this disease. A colony of transgenic (Pvrl3-Cre) rats presented with megaesophagus at 3 to 4 months of age; further breeding studies revealed a prevalence of 90% of transgene-positive animals having megaesophagus. Affected rats could be maintained on a total liquid diet long term and were shown to display the classic features of dilated esophagus, closed lower esophageal sphincter, and abnormal contractions on contrast radiography and fluoroscopy. Histologically, the findings of muscle degeneration, inflammation, and a reduced number of myenteric ganglia in the esophagus combined with ultrastructural lesions of muscle fiber disarray and mitochondrial changes in the striated muscle of these animals closely mimic that seen in the human condition. Muscle contractile studies looking at the response of the lower esophageal sphincter and fundus to electrical field stimulation, sodium nitroprusside, and L-nitro-L-arginine methyl ester also demonstrate the similarity between megaesophagus in the transgenic rats and patients with achalasia. No primary cause for megaesophagus was found, but the close parallel to the human form of the disease, as well as ease of care and manipulation of these rats, makes this a suitable model to better understand the etiology of achalasia as well as study new management and treatment options for this incurable condition.
Collapse
Affiliation(s)
- J Pang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - T M Borjeson
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - R M Ducore
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C A Carr
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Y Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M P Sullivan
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA
| | - V Cristofaro
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA
| | - J Luo
- Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia, PA, USA
| | - J M Lindstrom
- Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia, PA, USA
| | - J G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|