1
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Hydrogen Sulfide (H 2S- or H 2S n-Polysulfides) in Synaptic Plasticity: Modulation of NMDA Receptors and Neurotransmitter Release in Learning and Memory. Int J Mol Sci 2025; 26:3131. [PMID: 40243915 PMCID: PMC11988931 DOI: 10.3390/ijms26073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a pivotal gaseous transmitter in the central nervous system, influencing synaptic plasticity, learning, and memory by modulating various molecular pathways. This review examines recent evidence regarding how H2S regulates NMDA receptor function and neurotransmitter release in neuronal circuits. By synthesizing findings from animal and cellular models, we investigate the impacts of enzymatic H2S production and exogenous H2S on excitatory synaptic currents, long-term potentiation, and intracellular calcium signaling. Data suggest that H2S interacts directly with NMDA receptor subunits, altering receptor function and modulating neuronal excitability. Simultaneously, H2S promotes the release of neurotransmitters such as glutamate and GABA, shaping synaptic dynamics and plasticity. Furthermore, reports indicate that disruptions in H2S metabolism contribute to cognitive impairments and neurodegenerative disorders, underscoring the potential therapeutic value of targeting H2S-mediated pathways. Although the precise mechanisms of H2S-induced changes in synaptic strength remain elusive, a growing body of evidence positions H2S as a significant regulator of memory formation processes. This review calls for more rigorous exploration into the molecular underpinnings of H2S in synaptic plasticity, paving the way for novel pharmacological interventions in cognitive dysfunction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
2
|
Centurión D, de la Cruz SH, Castillo-Santiago SV, Becerril-Chacón ME, Torres-Pérez JA, Sánchez-López A. NaHS prejunctionally inhibits the cardioaccelerator sympathetic outflow in pithed rats. Eur J Pharmacol 2018; 823:35-40. [DOI: 10.1016/j.ejphar.2018.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 01/08/2023]
|
3
|
Swan KW, Song BM, Chen AL, Chen TJ, Chan RA, Guidry BT, Katakam PVG, Kerut EK, Giles TD, Kadowitz PJ. Analysis of decreases in systemic arterial pressure and heart rate in response to the hydrogen sulfide donor sodium sulfide. Am J Physiol Heart Circ Physiol 2017; 313:H732-H743. [PMID: 28667054 PMCID: PMC5668608 DOI: 10.1152/ajpheart.00729.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023]
Abstract
The actions of hydrogen sulfide (H2S) on the heart and vasculature have been extensively reported. However, the mechanisms underlying the effects of H2S are unclear in the anesthetized rat. The objective of the present study was to investigate the effect of H2S on the electrocardiogram and examine the relationship between H2S-induced changes in heart rate (HR), mean arterial pressure (MAP), and respiratory function. Intravenous administration of the H2S donor Na2S in the anesthetized Sprague-Dawley rat decreased MAP and HR and produced changes in respiratory function. The administration of Na2S significantly increased the RR interval at some doses but had no effect on PR or corrected QT(n)-B intervals. In experiments where respiration was maintained with a mechanical ventilator, we observed that Na2S-induced decreases in MAP and HR were independent of respiration. In experiments where respiration was maintained by mechanical ventilation and HR was maintained by cardiac pacing, Na2S-induced changes in MAP were not significantly altered, whereas changes in HR were abolished. Coadministration of glybenclamide significantly increased MAP and HR responses at some doses, but methylene blue, diltiazem, and ivabradine had no significant effect compared with control. The decreases in MAP and HR in response to Na2S could be dissociated and were independent of changes in respiratory function, ATP-sensitive K+ channels, methylene blue-sensitive mechanism involving L-type voltage-sensitive Ca2+ channels, or hyperpolarization-activated cyclic nucleotide-gated channels. Cardiovascular responses observed in spontaneously hypertensive rats were more robust than those in Sprague-Dawley rats.NEW & NOTEWORTHY H2S is a gasotransmitter capable of producing a decrease in mean arterial pressure and heart rate. The hypotensive and bradycardic effects of H2S can be dissociated, as shown with cardiac pacing experiments. Responses were not blocked by diltiazem, ivabradine, methylene blue, or glybenclamide.
Collapse
Affiliation(s)
- Kevin W Swan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bryant M Song
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Allen L Chen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Travis J Chen
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryan A Chan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bradley T Guidry
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Thomas D Giles
- Division of Cardiology, Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
4
|
DiNicolantonio JJ, OKeefe JH, McCarty MF. Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart 2017; 4:e000600. [PMID: 28674632 PMCID: PMC5471864 DOI: 10.1136/openhrt-2017-000600] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - James H OKeefe
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | |
Collapse
|
5
|
Ge N, Liu C, Li G, Xie L, Zhang Q, Li L, Hao N, Zhang J. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway. Int J Mol Med 2016; 37:1281-9. [PMID: 27035393 PMCID: PMC4829127 DOI: 10.3892/ijmm.2016.2538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ning Ge
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| | - Chao Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| | - Guofeng Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Lijun Xie
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Qinzeng Zhang
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Liping Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Na Hao
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Jianxin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| |
Collapse
|
6
|
Whiteman M, Perry A, Zhou Z, Bucci M, Papapetropoulos A, Cirino G, Wood ME. Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors. Handb Exp Pharmacol 2015; 230:337-363. [PMID: 26162843 DOI: 10.1007/978-3-319-18144-8_17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrogen sulfide is rapidly emerging as a key physiological mediator and potential therapeutic tool in numerous areas such as acute and chronic inflammation, neurodegenerative and cardiovascular disease, diabetes, obesity and cancer. However, the vast majority of the published studies have employed crude sulfide salts such as sodium hydrosulfide (NaSH) and sodium sulfide (Na2S) as H2S "donors" to generate H2S. Although these salts are cheap, readily available and easy to use, H2S generated from them occurs as an instantaneous and pH-dependent dissociation, whereas endogenous H2S synthesis from the enzymes cystathionine γ-lyase, cystathionine-β-synthase and 3-mercaptopyruvate sulfurtransferase is a slow and sustained process. Furthermore, sulfide salts are frequently used at concentrations (e.g. 100 μM to 10 mM) far in excess of the levels of H2S reported in vivo (nM to low μM). For the therapeutic potential of H2S is to be properly harnessed, pharmacological agents which generate H2S in a physiological manner and deliver physiologically relevant concentrations are needed. The phosphorodithioate GYY4137 has been proposed as "slow-release" H2S donors and has shown promising efficacy in cellular and animal model diseases such as hypertension, sepsis, atherosclerosis, neonatal lung injury and cancer. However, H2S generation from GYY4137 is inefficient necessitating its use at high concentrations/doses. However, structural modification of the phosphorodithioate core has led to compounds (e.g. AP67 and AP105) with accelerated rates of H2S generation and enhanced biological activity. In this review, the therapeutic potential and limitations of GYY4137 and related phosphorodithioate derivatives are discussed.
Collapse
|