1
|
Okazaki M, Matsumoto M, Koganezawa T. Hydrogen sulfide production in the medullary respiratory center modulates the neural circuit for respiratory pattern and rhythm generations. Sci Rep 2023; 13:20046. [PMID: 38049443 PMCID: PMC10696040 DOI: 10.1038/s41598-023-47280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine β-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Minako Okazaki
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tadachika Koganezawa
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
2
|
Koroleva K, Mustafina A, Yakovlev A, Hermann A, Giniatullin R, Sitdikova G. Receptor Mechanisms Mediating the Pro-Nociceptive Action of Hydrogen Sulfide in Rat Trigeminal Neurons and Meningeal Afferents. Front Cell Neurosci 2017; 11:226. [PMID: 28798669 PMCID: PMC5529342 DOI: 10.3389/fncel.2017.00226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
Hydrogen sulfide (H2S), a well-established member of the gasotransmitter family, is involved in a variety of physiological functions, including pro-nociceptive action in the sensory system. Although several reports have shown that H2S activates sensory neurons, the molecular targets of H2S action in trigeminal (TG) nociception, implicated in migraine, remains controversial. In this study, using suction electrode recordings, we investigate the effect of the H2S donor, sodium hydrosulfide (NaHS), on nociceptive firing in rat meningeal TG nerve fibers. The effect of NaHS was also explored with patch-clamp and calcium imaging techniques on isolated TG neurons. NaHS dramatically increased the nociceptive firing in TG nerve fibers. This effect was abolished by the TRPV1 inhibitor capsazepine but was partially prevented by the TRPA1 blocker HC 030031. In a fraction of isolated TG neurons, NaHS transiently increased amplitude of capsaicin-induced currents. Moreover, NaHS by itself induced inward currents in sensory neurons, which were abolished by the TRPV1 inhibitor capsazepine suggesting involvement of TRPV1 receptors. In contrast, the inhibitor of TRPA1 receptors HC 030031 did not prevent the NaHS-induced currents. Imaging of a large population of TG neurons revealed that NaHS induced calcium transients in 41% of tested neurons. Interestingly, this effect of NaHS in some neurons was inhibited by the TRPV1 antagonist capsazepine whereas in others it was sensitive to the TRPA1 blocker HC 030031. Our data suggest that both TRPV1 and TRPA1 receptors play a role in the pro-nociceptive action of NaHS in peripheral TG nerve endings in meninges and in somas of TG neurons. We propose that activation of TRPV1 and TRPA1 receptors by H2S during neuro-inflammation conditions contributes to the nociceptive firing in primary afferents underlying migraine pain.
Collapse
Affiliation(s)
- Kseniya Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Alsu Mustafina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Aleksey Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Anton Hermann
- Department of Cell Biology and Physiology, University of SalzburgSalzburg, Austria
| | - Rashid Giniatullin
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
3
|
Gabitova DM, Shaidullov IF, Sabirullina GI, Shafigullin MU, Sitdikov FG, Sitdikova GF. Role of Cyclic Nucleotides in the Effect of Hydrogen Sulfide on Contractions of Rat Jejunum. Bull Exp Biol Med 2017; 163:14-17. [PMID: 28580487 DOI: 10.1007/s10517-017-3726-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/17/2023]
Abstract
We studied the role of cyclic nucleotides in the influence of hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS, 200 μM), on motor activity of rat jejunum. NaHS reduced spontaneous and carbachol-induced contractions of rat jejunum segment, which suggests that H2S can act through mechanisms involving muscarinic receptor activation. Against the background of a membrane-penetrating non-hydrolyzable cAMP analogue or under conditions of adenylate cyclase blockade, the inhibitory effect of NaHS on the carbachol-induced contractions was maintained. Against the background of elevated cGMP concentration or guanylate cyclase inhibition, the reduction of carbachol-induced contractions upon exposure to NaHS was less pronounced than in control. It was hypothesized that H2S induces relaxation of carbachol-induced jejunum contractions, affecting protein kinase G targets or activating cGMP synthesis.
Collapse
Affiliation(s)
- D M Gabitova
- Department of Human and Animal Physiology, Kazan, Russia.,Department of Human Health Protection, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - I F Shaidullov
- Department of Human and Animal Physiology, Kazan, Russia.,Department of Human Health Protection, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | | | | | - F G Sitdikov
- Department of Human Health Protection, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - G F Sitdikova
- Department of Human and Animal Physiology, Kazan, Russia.
| |
Collapse
|
4
|
Hydrogen sulfide inhibits giant depolarizing potentials and abolishes epileptiform activity of neonatal rat hippocampal slices. Neuroscience 2017; 340:153-165. [DOI: 10.1016/j.neuroscience.2016.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
|
5
|
Inhibitory action of hydrogen sulfide on esophageal striated muscle motility in rats. Eur J Pharmacol 2016; 771:123-9. [PMID: 26687631 DOI: 10.1016/j.ejphar.2015.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is recognized as a gaseous transmitter and has many functions including regulation of gastrointestinal motility. The aim of the present study was to clarify the effects of H2S on the motility of esophageal striated muscle in rats. An isolated segment of the rat esophagus was placed in an organ bath and mechanical responses were recorded using a force transducer. Electrical stimulation of the vagus nerve evoked contractile response in the esophageal segment. The vagally mediated contraction was inhibited by application of an H2S donor. The H2S donor did not affect the contraction induced by electrical field stimulation, which can excite the striated muscle directly, not via vagus nerves. These results show that H2S has an inhibitory effect on esophageal motility not by directly attenuating striated muscle contractility but by blocking vagal motor nerve activity and/or neuromuscular transmissions. The inhibitory actions of H2S were not affected by pretreatment with the transient receptor potential vanniloid-1 blocker, transient receptor potential ankyrin-1 blocker, nitric oxide synthase inhibitor, blockers of potassium channels, and ganglionic blocker. RT-PCR and Western blot analysis revealed the expression of H2S-producing enzymes in esophageal tissue, whereas application of inhibitors of H2S-producing enzymes did not change vagally evoked contractions in the esophageal striated muscle. These findings suggest that H2S, which might be produced in the esophageal tissue endogenously, can regulate the motor activity of esophageal striated muscle via a novel inhibitory neural pathway.
Collapse
|
6
|
Moustafa A, Habara Y. Hydrogen sulfide: a novel gaseous signaling molecule and intracellular Ca2+ regulator in rat parotid acinar cells. Am J Physiol Cell Physiol 2015. [DOI: 10.1152/ajpcell.00147.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to nitric oxide (NO), hydrogen sulfide (H2S) is recognized as a crucial gaseous messenger that exerts many biological actions in various tissues. An attempt was made to assess the roles and underlying mechanisms of both gases in isolated rat parotid acinar cells. Ductal cells and some acinar cells were found to express NO and H2S synthases. Cevimeline, a muscarinic receptor agonist upregulated endothelial NO synthase in parotid tissue. NO and H2S donors increased the intracellular Ca2+ concentration ([Ca2+]i). This was not affected by inhibitors of phospholipase C and inositol 1,4,5-trisphosphate receptors, but was decreased by blockers of ryanodine receptors (RyRs), soluble guanylyl cyclase, and protein kinase G. The H2S donor evoked NO production, which was decreased by blockade of NO synthases or phosphoinositide 3-kinase or by hypotaurine, an H2S scavenger. The H2S donor-induced [Ca2+]i increase was diminished by a NO scavenger or the NO synthases blocker. These results suggest that NO and H2S play important roles in regulating [Ca2+]i via soluble guanylyl cyclase-cGMP-protein kinase G-RyRs, but not via inositol 1,4,5-trisphosphate receptors. The effect of H2S may be partially through NO produced via phosphoinositide 3-kinase-Akt-endothelial NO synthase. It was concluded that both gases regulate [Ca2+]i in a synergistic way, mainly via RyRs in rat parotid acinar cells.
Collapse
Affiliation(s)
- Amira Moustafa
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; and
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yoshiaki Habara
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; and
| |
Collapse
|
7
|
Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells. Biochem Biophys Res Commun 2015; 465:825-31. [DOI: 10.1016/j.bbrc.2015.08.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 01/05/2023]
|
8
|
Gerasimova E, Lebedeva J, Yakovlev A, Zefirov A, Giniatullin R, Sitdikova G. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction. Neuroscience 2015; 303:577-85. [PMID: 26192092 DOI: 10.1016/j.neuroscience.2015.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) is a widespread gasotransmitter also known as a powerful neuroprotective agent in the central nervous system. However, the action of H2S in peripheral synapses is much less studied. In the current project we studied the modulatory effects of the H2S donor sodium hydrosulfide (NaHS) on synaptic transmission in the mouse neuromuscular junction using microelectrode technique. Using focal recordings of presynaptic response and evoked transmitter release we have shown that NaHS (300 μM) increased evoked end-plate currents (EPCs) without changes of presynaptic waveforms which indicated the absence of NaHS effects on sodium and potassium currents of motor nerve endings. Using intracellular recordings it was shown that NaHS increased the frequency of miniature end-plate potentials (MEPPs) without changing their amplitudes indicating a pure presynaptic effect. Furthermore, NaHS increased the amplitude of end-plate potentials (EPPs) without influencing the resting membrane potential of muscle fibers. L-cysteine, a substrate of H2S synthesis induced, similar to NaHS, an increase of EPC amplitudes whereas inhibitors of H2S synthesis (β-cyano-L-alanine and aminooxyacetic acid) had the opposite effect. Inhibition of adenylate cyclase using MDL 12,330A hydrochloride (MDL 12,330A) or elevation of cAMP level with 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (pCPT-cAMP) completely prevented the facilitatory action of NaHS indicating involvement of the cAMP signaling cascade. The facilitatory effect of NaHS was significantly diminished when intracellular calcium (Ca(2+)) was buffered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM). Activation of ryanodine receptors by caffeine or ryanodine increased acetylcholine release and prevented further action of NaHS on transmitter release, likely due to an occlusion effect. Inhibition of ryanodine receptors by ryanodine or dantrolene also reduced the action of NaHS on EPC amplitudes. Our results indicate that in mammalian neuromuscular synapses endogenously produced H2S increases spontaneously and evoked quantal transmitter release from motor nerve endings without changing the response of nerve endings. The presynaptic effect of H2S appears mediated by intracellular Ca(2+) and cAMP signaling and involves presynaptic ryanodine receptors.
Collapse
Affiliation(s)
- E Gerasimova
- Department of Human and Animals Physiology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia.
| | - J Lebedeva
- Department of Human and Animals Physiology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia.
| | - A Yakovlev
- Department of Human and Animals Physiology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia.
| | - A Zefirov
- Department of Normal Physiology, Kazan Medical University, Butlerova Street 49, Kazan 420042, Russia.
| | - R Giniatullin
- Open Laboratory of Neurobiology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia; Cell Biology Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio 70211, Finland.
| | - G Sitdikova
- Department of Human and Animals Physiology, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia.
| |
Collapse
|
9
|
|
10
|
Effects of a Hydrogen Sulfide Donor on Spontaneous Contractile Activity of Rat Stomach and Jejunum. Bull Exp Biol Med 2014; 157:302-6. [DOI: 10.1007/s10517-014-2551-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 01/28/2023]
|