1
|
Chen Y, Wu Y, Gao M, Gao R, Zhang K. Differential response to topical lubrication in patient with dry eye disease, based on age. BMC Ophthalmol 2022; 22:396. [PMID: 36199043 PMCID: PMC9532823 DOI: 10.1186/s12886-022-02609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To compare the Ocular surface disease index (OSDI) score, Schirmer I test (SIT), fluorescein break up time (FBUT) and fluorescence staining (FLCS) score of dry eye patients at different ages. METHODS 90 eyes of 90 patients with mild to moderate dry eye from September 2020 to September 2021 were retrospectively included and were divided into young group (20-39 years, n = 29), middle-age group (40-59 years, n = 30), and elder group (> 60 years, n = 31). Patients were given a 28-day topical lubricating ocular surface and repair-promoting drugs combined with local physical therapy. Patients were followed up at 7, 14 and 28 days. The OSDI score, SIT, FBUT and FLCS score were examined. RESULTS There were differences between the OSDI score in three groups at each time point (all P < 0.001). SIT were different among the three groups (F = 350.61, P < 0.001), and a time effect was found (F = 80.87, P < 0.001). SIT at 14 and 28 days after treatment in middle-age and elder groups were lower than young group (all P < 0.001). SIT at 7, 14 and 28 days in elder group were lower than middle-age group (all P < 0.001). FLCS score was lower at 28 days than other time points (all P < 0.001). CONCLUSION Dry eye patients are given a 28-day topical lubricating ocular surface and repair-promoting drugs combined with local physical therapy, which can promote tear secretion, film stability, and the recovery of corneal integrity. Age affects the treatment effect of mild to moderate dry eye, among which tear secretion is the most significant.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of ophthalmology, the General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, 110840, Shenyang, China
| | - Yajun Wu
- Department of ophthalmology, the General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, 110840, Shenyang, China
| | - Minghong Gao
- Department of ophthalmology, the General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, 110840, Shenyang, China.
| | - Ruiyao Gao
- Department of ophthalmology, the General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, 110840, Shenyang, China
| | - Kai Zhang
- Department of ophthalmology, the General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, 110840, Shenyang, China
| |
Collapse
|
3
|
Chen Q, Ji C, Zheng R, Yang L, Ren J, Li Y, Han Y, Zhou P, Liu Z, Qiu Y. N-Palmitoylethanolamine Maintains Local Lipid Homeostasis to Relieve Sleep Deprivation-Induced Dry Eye Syndrome. Front Pharmacol 2020; 10:1622. [PMID: 32047441 PMCID: PMC6997544 DOI: 10.3389/fphar.2019.01622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Sleep loss is a key factor associated with dry eye. Use of a “stick over water” mouse model revealed that sleep deprivation induces accumulation of lipids, hypertrophy, and dysfunction of the lacrimal gland. These changes result in decreased tear production and dry eye clinical signs. The specific pathophysiological mechanisms that contribute to dry eye remain unclear. In this study, we found that sleep deprivation decreased endogenous lipid palmitoylethanolamide (PEA) expression in the lacrimal gland. The reduced expression was mainly attributed to the decreased expression of N-acylated phosphatidylethanolamine–phospholipase D, the synthetic enzyme of PEA. Exogenous PEA treatment restored local lipid metabolism homeostasis in the lacrimal gland. This change was accompanied by reduced lipid deposition, maintenance of the endoplasmic reticulum and mitochondrial morphology, and improved acinar cell secretory function. PEA treatment also prevented damage to corneal barrier function and improved the dry eye clinical signs caused by sleep deprivation. The nuclear receptor peroxisome proliferator-activated receptor-α (PPAR-α) was found to mediate the PEA-associated improvements. We describe here for the first time that PEA is involved in sleep deprivation–induced lacrimal gland pathogenesis and dry eye development. PEA and its metabolizing enzymes may serve as adjunctive therapeutic targets for treatment of dry eye.
Collapse
Affiliation(s)
- Qi Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Chunyan Ji
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Ruihe Zheng
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Longhe Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yitian Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yun Han
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Pan Zhou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| |
Collapse
|
4
|
Bakeeva LE, Eldarov CM, Vangely IM, Kolosova NG, Vays VB. Mitochondria-targeted antioxidant SkQ1 reduces age-related alterations in the ultrastructure of the lacrimal gland. Oncotarget 2018; 7:80208-80222. [PMID: 27852065 PMCID: PMC5348314 DOI: 10.18632/oncotarget.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
Dry eye syndrome is an eye disorder affecting many people at an old age. Because dry eye syndrome is accelerated by aging, a useful approach to the prevention of this syndrome may be an intervention into the aging process. Previously, we showed that the mitochondria-targeted antioxidant SkQ1 delays manifestations of aging and inhibits the development of age-related diseases including dry eye syndrome. Nevertheless, the link between SkQ1's effects and its suppression of age-related changes in the lacrimal gland remains unclear. Here we demonstrated that dietary supplementation with SkQ1 (250 nmol/[kg body weight] daily) starting at age 1.5 months significantly alleviated the pathological changes in lacrimal glands of Wistar rats by age 24 months. By this age, lacrimal glands underwent dramatic deterioration of the ultrastructure that was indicative of irreversible disturbances in these glands' functioning. In contrast, in SkQ1-treated rats, the ultrastructure of the lacrimal gland was similar to that in much younger rats. Morphometric analysis of electron-microscopic specimens of lacrimal glands revealed the presence of numerous secretory granules in acinar cells and a significant increase in the number of operating intercalary ducts. Our results confirm that dietary supplementation with SkQ1 is a promising approach to healthy ageing and to prevention of aberrations in the lacrimal gland that underlie dry eye syndrome.
Collapse
Affiliation(s)
- Lora E Bakeeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Chupalav M Eldarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Irina M Vangely
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Valeriya B Vays
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| |
Collapse
|
5
|
Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci 2016; 56:8392-402. [PMID: 26747770 DOI: 10.1167/iovs.15-17477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. METHODS The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. RESULTS The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. CONCLUSIONS We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration.
Collapse
Affiliation(s)
- Takeshi Umazume
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - William M Thomas
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sabrina Campbell
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Hema Aluri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Suharika Thotakura
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|