1
|
Um E, Oh JM, Park J, Song T, Kim TE, Choi Y, Shin C, Kolygina D, Jeon JH, Grzybowski BA, Cho YK. Immature dendritic cells navigate microscopic mazes to find tumor cells. LAB ON A CHIP 2019; 19:1665-1675. [PMID: 30931468 DOI: 10.1039/c9lc00150f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells with high sentinel ability to scan their neighborhood and to initiate an adaptive immune response. Whereas chemotactic migration of mature DCs (mDCs) towards lymph nodes is relatively well documented, the migratory behavior of immature DCs (imDCs) in tumor microenvironments is still poorly understood. Here, microfluidic systems of various geometries, including mazes, are used to investigate how the physical and chemical microenvironment influences the migration pattern of imDCs. Under proper degree of confinement, the imDCs are preferentially recruited towards cancer vs. normal cells, accompanied by increased cell speed and persistence. Furthermore, a systematic screen of cytokines, reveals that Gas6 is a major chemokine responsible for the chemotactic preference. These results and the accompanying theoretical model suggest that imDC migration in complex tissue environments is tuned by a proper balance between the strength of the chemical gradients and the degree of spatial confinement.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Xiong M, Li L, Liu Y, Zhou F, Shi N, Huang H, Wang J, Zhu J. The sphingosine 1-phosphate receptor agonist FTY720 interfered the distribution of dendritic cell and induced the maternal-fetal immune tolerance. J Cell Biochem 2019; 120:1869-1877. [PMID: 30216517 DOI: 10.1002/jcb.27501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of FTY720, an agonist of the sphingosine 1-phosphate (S1P) receptor, on the embryo loss rate in mice of spontaneous abortion model and the underlying mechanism. METHODS The effect of intraperitoneal injection of FTY720 on the embryo loss rate in mice of spontaneous abortion model was observed. The expression of S1PR on the dendritic cell (DC) surface was detected by reverse transcription polymerase chain reaction. The quantity and maturation of DCs in peripheral blood and local tissues of pregnant mice, and the expression of CCL19 as well as its receptor C-C chemokine receptor 7 (CCR7) were detected by flow cytometry and immunohistochemistry. Chemotaxis assay was performed to verify the effect of FTY720 on the chemotaxis of DCs. RESULTS (1) FTY720 had no significant effect on the embryo loss rate in normal pregnant rats. In contrast, adoptive transferring of FTY720 significantly reduced the embryo loss rate of the spontaneous abortion mouse model (P < 0.05). (2) S1PR was extensively expressed on DC surface. The S1P receptor agonist FTY720 reduced the expressions of DC surface chemokines and its receptor (P < 0.05), resulting in a significant reduction in the number of DCs that were chemoattracted to maternal-fetal interface flow cytometry (P < 0.05). (3) FTY720 had no significant effect on the differentiation and apoptosis rate of DCs (P > 0.05). CONCLUSION We hypothesized that FTY720 may reduce the number of DCs that were chemoattracted to the maternal-fetal interface by downregulating the expression of CCR7, which ultimately induces maternal-fetal immune tolerance.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fangfang Zhou
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nana Shi
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongling Huang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieping Zhu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Santillo BT, Reis DDS, da Silva LT, Romani NT, Duarte AJDS, Oshiro TM. Phenotypic and functional profile of IFN-α-differentiated dendritic cells (IFN-DCs) from HIV-infected individuals. Hum Vaccin Immunother 2018; 15:2140-2149. [PMID: 30427745 PMCID: PMC6773379 DOI: 10.1080/21645515.2018.1547603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023] Open
Abstract
Dendritic cell (DC)-based immunotherapy is a promising strategy for the treatment of HIV-infected individuals. Different from the conventional protocol for DC differentiation based on the cytokine IL-4 (IL4-DCs), several studies have suggested obtaining DCs by culturing monocytes with type I IFN (IFN-α) to yield IFN-DCs, as performed in cancer therapy. To evaluate the phenotypic and functional characteristics, monocytes from HIV-infected subjects were differentiated into IFN-DCs or IL4-DCs, pulsed with chemically inactivated HIV and stimulated with pro-inflammatory cytokines. A comparative analysis between both types of monocyte-derived DCs (MoDCs) showed that immature IFN-DCs were phenotypically distinct from immature IL4-DCs at the baseline of differentiation, presenting a pre-activated profile. From the functional profile, we determined that IFN-DCs were capable of producing the cytokine IL-12 p70 and of inducing the production of IFN-γ by CD4 + T lymphocytes but not by TCD8+ lymphocytes. Our results suggest that IFN-DCs derived from HIV-infected individuals are able to recognize and present viral antigens to induce TCD4+ cellular immunity to HIV.
Collapse
Affiliation(s)
- Bruna Tereso Santillo
- Laboratório de Dermatologia e Imunodeficiências LIM56, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Denise da Silva Reis
- Laboratório de Dermatologia e Imunodeficiências LIM56, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Laís Teodoro da Silva
- Laboratório de Dermatologia e Imunodeficiências LIM56, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nathalia Teixeira Romani
- Laboratório de Dermatologia e Imunodeficiências LIM56, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Dermatologia e Imunodeficiências LIM56, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratório de Dermatologia e Imunodeficiências LIM56, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Rakic M, Persic V, Kehler T, Bastiancic AL, Rosovic I, Laskarin G, Sotosek Tokmadzic V. Possible role of circulating endothelial cells in patients after acute myocardial infarction. Med Hypotheses 2018; 117:42-46. [PMID: 30077195 DOI: 10.1016/j.mehy.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
Acute myocardial infarction (AMI) occurs as a result of insufficient myocardial perfusion leading to cell necrosis. This is most commonly due to the obstruction of the coronary artery by ruptured atherosclerotic plaque and thrombosis. Damaged ischemic and necrotic myocardial cells release pro-inflammatory substances in tissue and plasma, leading to a systemic inflammatory response. Profound systemic inflammatory response during ischemia/reperfusion injury causes disruption of endothelial glycocalyx and detachment of endothelial cells that express von Willebrant factor (vWF). We hypothesize that circulating vWF+ endothelial cells could act as antigen presenting cells which interact with T and NK cells directly, by cell to cell contact and indirectly by cytokine and chemokine secretion, leading to the immune response towards inflammation. Analyzing the frequency, phenotype and pro-inflammatory substances produced in circulating vWF positive (+) cells in patients with AMI could be beneficial to determine the severity of the pro-inflammatory response, according to the level of endothelial dysfunction in the early period of AMI. To evaluate these hypotheses, we suggest to determine frequency, phenotype, and ability of cytokine/chemokine production in circulating vWF+ endothelial cells by simultaneous surface and intracellular cell staining, and flow cytometry analysis. Secretion of pro-inflammatory cytokines and chemokines, pro-atherogenic substances and the components of glycocalyx might be measured in supernatants of magnetically separated or sorted vWF+ endothelial cells, as well as in the serum of a patient with acute AMI by enzyme linked-immunoassay tests. The interaction of increasing concentrations of isolated circulating vWF+ endothelial cells and cognate T and NK cells might be investigated by lymphocyte proliferation rate, cytotoxic mediators' expression, and cytokine production. If our hypothesis is correct, characterization of circulating vWF+ endothelial cells could grant us greater insight into their role in pathophysiology of AMI and the degree of myocardial damage.
Collapse
Affiliation(s)
- Marijana Rakic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia
| | - Viktor Persic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia; Department of Medical Rehabilitation, Medical Faculty, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Tatjana Kehler
- Department of Rheumatology, Rehabilitation, and Physical Medicine, Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia
| | - Ana Lanca Bastiancic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia
| | - Ivan Rosovic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia
| | - Gordana Laskarin
- Department of Rheumatology, Rehabilitation, and Physical Medicine, Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia; Department of Physiology and Immunology, Medical Faculty University of Rijeka, B.Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotosek Tokmadzic
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
5
|
Zhang X, Wang Y, Cao Y, Zhang X, Zhao H. Increased CCL19 expression is associated with progression in cervical cancer. Oncotarget 2017; 8:73817-73825. [PMID: 29088748 PMCID: PMC5650303 DOI: 10.18632/oncotarget.17982] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the third most common cancer and the fourth leading cause of malignancy related mortality in women worldwide. CCL19 is highly expressed in human cancer cells, and ligand CCL19 binding to CCR7 induces actin polymerization and pseudopodia formation. However, whether or not CCL19 is involved in EMT of human cervical cancer needs further investigation. Using quantitative PCR and western blot analyses, we found that CCL19 is overexpressed in cervical cancer cell lines and tissues. Knockdown of CCL19 via siRNA inhibited the proliferation of cervical cancer cells by increasing apoptosis. Further analyses showed that inhibitory effects of CCL19 on cell migration and invasion were partly associated with EMT process. In conclusion, these data indicate that CCL19 is abnormally expressed in cervical cancer, indicating a novel and important role for CCL19 in cervical cancer malignant transformation.
Collapse
Affiliation(s)
- Xiaoshu Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Yue Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Yanning Cao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Xueshan Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Haiya Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
6
|
Nguyen T, Lagman C, Chung LK, Chen CHJ, Poon J, Ong V, Voth BL, Yang I. Insights into CCL21's roles in immunosurveillance and immunotherapy for gliomas. J Neuroimmunol 2017; 305:29-34. [PMID: 28284342 DOI: 10.1016/j.jneuroim.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/17/2017] [Indexed: 02/02/2023]
Abstract
Chemokine (C-C) motif ligand 21 (CCL21) is involved in immunosurveillance and has recently garnered the attention of neuro-oncologists and neuroscientists. CCL21 contains an extended C-terminus, which increases binding to lymphatic glycosaminoglycans and provides a mechanism for cell trafficking by forming a stationary chemokine concentration gradient that allows cell migration via haptotaxis. CCL21 is expressed by endothelial cells of the blood-brain barrier in physiologic and pathologic conditions. CCL21 has also been implicated in leukocyte extravasation into the central nervous system. In this review, we summarize the role of CCL21 in immunosurveillance and explore its potential as an immunotherapeutic agent for the treatment of gliomas.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cheng Hao Jacky Chen
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jessica Poon
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Vera Ong
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brittany L Voth
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States; Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA, United States; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|