1
|
Pustovit KB, Potekhina VM, Ivanova AD, Petrov AM, Abramochkin DV, Kuzmin VS. Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signal 2019; 15:107-117. [PMID: 30756226 DOI: 10.1007/s11302-019-09645-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular ATP and nicotinamide adenine dinucleotide (β-NAD) demonstrate properties of neurotransmitters and neuromodulators in peripheral and central nervous system. It has been shown previously that ATP and β-NAD affect cardiac functioning in adult mammals. Nevertheless, the modulation of cardiac activity by purine compounds in the early postnatal development is still not elucidated. Also, the potential influence of ATP and β-NAD on cholinergic neurotransmission in the heart has not been investigated previously. Age-dependence of electrophysiological effects produced by extracellular ATP and β-NAD was studied in the rat myocardium using sharp microelectrode technique. ATP and β-NAD could affect ventricular and supraventricular myocardium independent from autonomic influences. Both purines induced reduction of action potentials (APs) duration in tissue preparations of atrial, ventricular myocardium, and myocardial sleeves of pulmonary veins from early postnatal rats similarly to myocardium of adult animals. Both purine compounds demonstrated weak age-dependence of the effect. We have estimated the ability of ATP and β-NAD to alter cholinergic effects in the heart. Both purines suppressed inhibitory effects produced by stimulation of intracardiac parasympathetic nerve in right atria from adult animals, but not in preparations from neonates. Also, ATP and β-NAD suppressed rest and evoked release of acetylcholine (ACh) in adult animals. β-NAD suppressed effects of parasympathetic stimulation and ACh release stronger than ATP. In conclusion, ATP and β-NAD control the heart at the postsynaptic and presynaptic levels via affecting the cardiac myocytes APs and ACh release. Postsynaptic and presynaptic effects of purines may be antagonistic and the latter demonstrates age-dependence.
Collapse
Affiliation(s)
- Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, Russia, 117997
| | - Viktoria M Potekhina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991
| | - Alexandra D Ivanova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991
| | - Alexey M Petrov
- Institute of Neuroscience, Kazan State Medial University, Butlerova st. 49, Kazan, Russia, 420012.,Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", P. O. Box 30, Lobachevsky Str., 2/31, Kazan, Russia, 420111
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, Russia, 117997.,Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Division, Russian Academy of Sciences, Pervomayskaya 50, Syktyvkar, Russia, 167982
| | - Vlad S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991. .,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, Russia, 117997.
| |
Collapse
|
2
|
Pustovit KB, Ivanova AD, Kuz'min VS. Extracellular NAD + Suppresses Adrenergic Effects in the Atrial Myocardium of Rats during the Early Postnatal Ontogeny. Bull Exp Biol Med 2018; 165:1-4. [PMID: 29797136 DOI: 10.1007/s10517-018-4085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Indexed: 11/28/2022]
Abstract
The effects of sympathetic cotransmitter NAD+ (10 μM) on bioelectric activity of the heart under conditions of adrenergic stimulation were studied on isolated spontaneously contracting preparations (without stimulation) of the right atrium from 2-7-day-old rats. Action potentials were recorded in the working myocardium using standard microelectrode technique. Perfusion of the right atrium with norepinephrine solution (1 μM) altered the configuration and significantly lengthened the action potentials. NAD + against the background of norepinephrine stimulation significantly decreased the duration of action potentials, in particular, at 25% repolarization. The effect of purine compounds NAD + , ATP, and adenosine on bioelectrical activity of the heart of newborn rats was studied under basal conditions (without norepinephrine stimulation). The effect of NAD + against the background of adrenergic stimulation was more pronounced than under basal conditions and was probably determined by suppression of ICaL, which can be the main mechanism of NAD + action on rat heart.
Collapse
Affiliation(s)
- K B Pustovit
- Department of Human and Animal Physiology, M. V. Lomonosov Moscow State University, Moskva, Russia. .,Department pf Physiology, N. I. Pirogov Russian National Research Medical University, Moscow, Russia.
| | - A D Ivanova
- Department of Human and Animal Physiology, M. V. Lomonosov Moscow State University, Moskva, Russia
| | - V S Kuz'min
- Department of Human and Animal Physiology, M. V. Lomonosov Moscow State University, Moskva, Russia.,Department pf Physiology, N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD + metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol 2017; 314:H839-H852. [PMID: 29351465 DOI: 10.1152/ajpheart.00409.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and related metabolites are central mediators of fuel oxidation and bioenergetics within cardiomyocytes. Additionally, NAD+ is required for the activity of multifunctional enzymes, including sirtuins and poly(ADP-ribose) polymerases that regulate posttranslational modifications, DNA damage responses, and Ca2+ signaling. Recent research has indicated that NAD+ participates in a multitude of processes dysregulated in cardiovascular diseases. Therefore, supplementation of NAD+ precursors, including nicotinamide riboside that boosts or repletes the NAD+ metabolome, may be cardioprotective. This review examines the molecular physiology and preclinical data with respect to NAD+ precursors in heart failure-related cardiac remodeling, ischemic-reperfusion injury, and arrhythmias. In addition, alternative NAD+-boosting strategies and potential systemic effects of NAD+ supplementation with implications on cardiovascular health and disease are surveyed.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.,Department of Biochemistry, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Barry London
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
4
|
Abramochkin DV, Pustovit KB, Kuz'min VS. Diadenosine Polyphosphates Suppress the Effects of Sympathetic Nerve Stimulation in Rabbit Heart Pacemaker. Bull Exp Biol Med 2017; 163:586-589. [PMID: 28948554 DOI: 10.1007/s10517-017-3854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/25/2022]
Abstract
The modulatory influence of diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) on the effect of intramural autonomic nerve stimulation in isolated rabbit sinoatrial node were examined. Electrical activity of the sinoatrial node was recorded intracellularly. Against the background of blockade of adrenergic effects with propranolol (3×10-6 M) or in preparations isolated 2 h after injection of reserpine (2 mg/kg), nerve stimulation induced short-term membrane hyperpolarization and diminished the sinus node firing rate. These phenomena were not affected by Ap4A or Ap5A (10-5 M). Under the action of atropine (3×10-6 M) that completely eliminated the cholinergic influences, nerve stimulation enhanced the sinus node firing rate by 17.30±3.45% from the initial rate. Both Ap4A and Ap5A moderated the stimulation-induced elevation of firing rate to 9.9±2.8 and 10.5±2.9%, respectively. The data suggest that diadenosine polyphosphates significantly modulate the sympathetic influences on the heart rhythm, but have no effect on the parasympathetic control over activity of sinoatrial node.
Collapse
Affiliation(s)
- D V Abramochkin
- Department of Human and Animal Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - K B Pustovit
- Department of Human and Animal Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Kuz'min
- Department of Human and Animal Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Kuzmin VS, Pustovit KB, Abramochkin DV. Effects of exogenous nicotinamide adenine dinucleotide (NAD+) in the rat heart are mediated by P2 purine receptors. J Biomed Sci 2016; 23:50. [PMID: 27350532 PMCID: PMC4924331 DOI: 10.1186/s12929-016-0267-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Recently, NAD+ has been considered as an essential factor, participating in nerve control of physiological functions and intercellular communication. NAD+ also has been supposed as endogenous activator of P1 and P2 purinoreceptors. Effects of extracellular NAD+ remain poorly investigated in cardiac tissue. This study aims to investigate the effects of extracellular NAD+ in different types of supraventricular and ventricular working myocardium from rat and their potential mechanisms. Methods The standard technique of sharp microelectrode action potential recording in cardiac multicellular preparations was used to study the effects of NAD+. Results Extracellular NAD+ induced significant changes in bioelectrical activity of left auricle (LA), right auricle (RA), pulmonary veins (PV) and right ventricular wall (RV) myocardial preparations. 10–100 μM NAD+ produced two opposite effects in LA and RA – quickly developing and transient prolongation of action potentials (AP) and delayed sustained AP shortening, which follows the initial positive effect. In PV and RV only AP shortening was observed in response to NAD+ application. In PV preparations AP shortening induced by NAD+ may be considered as a potential proarrhythmic effect. Revealed cardiotropic effects of NAD+ are likely to be mediated by P2 purine receptors, since P1 blocker DPCPX failed to affect them and P2 antagonist suramin abolished NAD + −induced alterations of electrical activity. P2X receptors may be responsible for NAD + −induced short-lasting AP prolongation, while P2Y receptors mediate persistent AP shortening. The latter effect is partially removed by PLC inhibitor U73122 showing the potential involvement of phosphoinositide signaling pathway in mediation of NAD+ cardiotropic effects. Conclusions Extracellular NAD+ is supposed to be a novel regulator of cardiac electrical activity. P2 receptors represent the main target of NAD+ at least in the rat heart.
Collapse
Affiliation(s)
- Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia. .,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia.
| |
Collapse
|
6
|
Effects of Nicotinamide Adenine Dinucleotide (NAD(+)) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs. Bull Exp Biol Med 2016; 160:733-6. [PMID: 27165058 DOI: 10.1007/s10517-016-3297-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 10/21/2022]
Abstract
Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors.
Collapse
|