1
|
Longo L, Bartikoski BJ, de Souza VEG, Salvati F, Uribe‐Cruz C, Lenz G, Xavier RM, Álvares‐da‐Silva MR, Filippi‐Chiela EC. Muscle fibre morphometric analysis (MusMA) correlates with muscle function and cardiovascular risk prognosis. Int J Exp Pathol 2024; 105:100-113. [PMID: 38722178 PMCID: PMC11129960 DOI: 10.1111/iep.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
Morphometry of striated muscle fibres is critical for monitoring muscle health and function. Here, we evaluated functional parameters of skeletal and cardiac striated muscle in two experimental models using the Morphometric Analysis of Muscle Fibre tool (MusMA). The collagen-induced arthritis model was used to evaluate the function of skeletal striated muscle and the non-alcoholic fatty liver disease model was used for cardiac striated muscle analysis. After euthanasia, we used haeamatoxylin and eosin stained sections of skeletal and cardiac muscle to perform muscle fibre segmentation and morphometric analysis. Morphometric analysis classified muscle fibres into six subpopulations: normal, regular hypertrophic, irregular hypertrophic, irregular, irregular atrophic and regular atrophic. The percentage of atrophic fibres was associated with lower walking speed (p = 0.009) and lower body weight (p = 0.026), respectively. Fibres categorized as normal were associated with maximum grip strength (p < 0.001) and higher march speed (p < 0.001). In the evaluation of cardiac striated muscle fibres, the percentage of normal cardiomyocytes negatively correlated with cardiovascular risk markers such as the presence of abdominal adipose tissue (p = .003), miR-33a expression (p = .001) and the expression of miR-126 (p = .042) Furthermore, the percentage of atrophic cardiomyocytes correlated significantly with the Castelli risk index II (p = .014). MusMA is a simple and objective tool that allows the screening of striated muscle fibre morphometry, which can complement the diagnosis of muscle diseases while providing functional and prognostic information in basic and clinical research.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Bárbara Jonson Bartikoski
- Autoimmune Diseases Laboratory, Rheumatology ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Fernando Salvati
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Carolina Uribe‐Cruz
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Universidad Católica de las MisionesPosadasArgentina
| | - Guido Lenz
- Department of Biophysics and Biotechnology CenterUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Ricardo Machado Xavier
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Graduate Program in Medical SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Mário Reis Álvares‐da‐Silva
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental ResearchHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Division of GastroenterologyHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Eduardo Cremonese Filippi‐Chiela
- Graduate Program in Gastroenterology and HepatologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Department of Morphological SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Experimental Research ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| |
Collapse
|
2
|
Ornithine Aspartate and Vitamin-E Combination Has Beneficial Effects on Cardiovascular Risk Factors in an Animal Model of Nonalcoholic Fatty Liver Disease in Rats. Biomolecules 2022; 12:biom12121773. [PMID: 36551202 PMCID: PMC9775092 DOI: 10.3390/biom12121773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular (CV) disease is the main cause of death in nonalcoholic fatty liver disease (NAFLD), a clinical condition without any approved pharmacological therapy. Thus, we investigated the effects of ornithine aspartate (LOLA) and/or Vitamin E (VitE) on CV parameters in a steatohepatitis experimental model. Adult Sprague Dawley rats were randomly assigned (10 animals each) and treated from 16 to 28 weeks with gavage as follows: controls (standard diet plus distilled water (DW)), NAFLD (high-fat choline-deficient diet (HFCD) plus DW), NAFLD+LOLA (HFCD plus LOLA (200 mg/kg/day)), NAFLD+VitE (HFCD plus VitE (150 mg twice a week)) or NAFLD+LOLA+VitE in the same doses. Atherogenic ratios were higher in NAFLD when compared with NAFLD+LOLA+VitE and controls (p < 0.05). Serum concentration of IL-1β, IL-6, TNF-α, MCP-1, e-selectin, ICAM-1, and PAI-1 were not different in intervention groups and controls (p > 0.05). NAFLD+LOLA decreased miR-122, miR-33a, and miR-186 (p < 0.05, for all) in relation to NAFLD. NAFLD+LOLA+VitE decreased miR-122, miR-33a and miR-186, and increased miR-126 (p < 0.05, for all) in comparison to NAFLD and NAFLD+VitE. NAFLD+LOLA and NAFLD+LOLA+VitE prevented liver collagen deposition (p = 0.006) in comparison to NAFLD. Normal cardiac fibers (size and shape) were lower in NAFLD in relation to the others; and the inverse was reported for the percentage of regular hypertrophic cardiomyocytes. NAFLD+LOLA+VitE promoted a significant improvement in atherogenic dyslipidemia, liver fibrosis, and paracrine signaling of lipid metabolism and endothelial dysfunction. This association should be further explored in the treatment of NAFLD-associated CV risk factors.
Collapse
|
3
|
Longo L, Rampelotto PH, Filippi-Chiela E, de Souza VEG, Salvati F, Cerski CT, da Silveira TR, Oliveira CP, Uribe-Cruz C, Álvares-da-Silva MR. Gut dysbiosis and systemic inflammation promote cardiomyocyte abnormalities in an experimental model of steatohepatitis. World J Hepatol 2021; 13:2052-2070. [PMID: 35070008 PMCID: PMC8727214 DOI: 10.4254/wjh.v13.i12.2052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiovascular disease is the main cause of death in metabolic-associated fatty liver disease, and gut microbiota dysbiosis is associated with both of them. AIM To assess the relationship between gut dysbiosis and cardiovascular risk (CVR) in an experimental model of steatohepatitis. METHODS Adult male Sprague-Dawley rats were randomized to a control group (n = 10) fed a standard diet and an intervention group (n = 10) fed a high-fat choline-deficient diet for 16 wk. Biochemical, molecular, hepatic, and cardiac histopathology. Gut microbiota variables were evaluated. RESULTS The intervention group had a significantly higher atherogenic coefficient, Castelli's risk index (CRI)-I and CRI-II, interleukin-1β, tissue inhibitor of metalloproteinase-1 (all P < 0.001), monocyte chemoattractant protein-1 (P = 0.005), and plasminogen activator inhibitor-1 (P = 0.037) than the control group. Gene expression of miR-33a increased (P = 0.001) and miR-126 (P < 0.001) decreased in the intervention group. Steatohepatitis with fibrosis was seen in the intervention group, and heart computerized histological imaging analysis showed a significant decrease in the percentage of cardiomyocytes with a normal morphometric appearance (P = 0.007), reduction in the mean area of cardiomyocytes (P = 0.037), and an increase of atrophic cardiomyocytes (P = 0.007). There were significant correlations between the cardiomyocyte morphometry markers and those of progression and severity of liver disease and CVR. The intervention group had a lower Shannon diversity index and fewer changes in the structural pattern of gut microbiota (both P < 0.001) than controls. Nine microbial families that are involved in lipid metabolism were differentially abundant in intervention group and were significantly correlated with markers of liver injury and CVR. CONCLUSION The study found a link between gut dysbiosis and significant cardiomyocyte abnormalities in animals with steatohepatitis.
Collapse
Affiliation(s)
- Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil.
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do SulPorto Alegre 90050-170, Rio Grande do Sul, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Fernando Salvati
- School of Medicine, Instituto Meridional de Educação-IMED, Passo Fundo 99070-220, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Cláudia P Oliveira
- Department of Gastroenterology (LIM07), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Ferro MS, Mascaro MB, De Souza RR. Effects of aging on the secretory apparatus in the right atrial cardiomyocytes of rats. Acta Histochem 2020; 122:151579. [PMID: 32778241 DOI: 10.1016/j.acthis.2020.151579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
The cardiac atria secrets polypeptide hormones usually called natriuretic peptides (NPs). These substances play a relevant role in the blood pressure regulation. The objective of the study was to estimate the effects of aging on the secretory apparatus of NPs in cardiomyocytes of the right atrium. Twenty male Wistar rats were studied: 10 young animals aged 3 months old (237 ± 27 g; mean ± SD) and 10 old animals aged 20 months old (450 ± 68 g; mean ± SD). The systolic blood pressure was verified instants before the moment of the euthanasia. Electron micrographs were prepared to quantify the area and density of the NP granules and the relative volumes of the endoplasmic reticulum, Golgi complex, and mitochondria. In addition, the number of pores per 10 μm of karyotheca was another variable evaluated. The significance of the results between the two groups evaluated was analyzed by the Student's t test (p < 0.05). The cardiomyocytes obtained from animals of the old group showed decreased in sectional area and density of secretory granules of NP and lower relative volume of endoplasmic reticulum, Golgi complex, and mitochondria compared with the young rats. Moreover, the quantitative density of nuclear pores was significantly lower compared with the youngers. CONCLUSION: Aging causes hypotrophy of the cardiomyocytes of right atrium, similar to what occurs in ventricular cardiomyocytes.
Collapse
|