1
|
Santaolalla Sanchez FJ, Gutierrez Posso JD, Santaolalla Montoya F, Zabala JA, Arrizabalaga-Iriondo A, Revuelta M, Sánchez Del Rey A. Pathogenesis and New Pharmacological Approaches to Noise-Induced Hearing Loss: A Systematic Review. Antioxidants (Basel) 2024; 13:1105. [PMID: 39334764 PMCID: PMC11428627 DOI: 10.3390/antiox13091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is responsible for significant adverse effects on cognition, quality of life and work, social relationships, motor skills, and other psychological aspects. The severity of NIHL depends on individual patient characteristics, sound intensity, and mainly the duration of sound exposure. NIHL leads to the production of a reactive oxygen (ROS) inflammatory response and the activation of apoptotic pathways, DNA fragmentation, and cell death. In this situation, antioxidants can interact with free radicals as well as anti-apoptotics or anti-inflammatory substances and stop the reaction before vital molecules are damaged. Therefore, the aim of this study was to analyze the effects of different pharmacological treatments, focusing on exogenous antioxidants, anti-inflammatories, and anti-apoptotics to reduce the cellular damage caused by acoustic trauma in the inner ear. Experimental animal studies using these molecules have shown that they protect hair cells and reduce hearing loss due to acoustic trauma. However, there is a need for more conclusive evidence demonstrating the protective effects of antioxidant/anti-inflammatory or anti-apoptotic drugs' administration, the timeline in which they exert their pharmacological action, and the dose in which they should be used in order to consider them as therapeutic drugs. Further studies are needed to fully understand the potential of these drugs as they may be a promising option to prevent and treat noise-induced hearing loss.
Collapse
Affiliation(s)
| | - Juan David Gutierrez Posso
- Otorhinolaryngology Service, Basurto University Hospital, OSI Bilbao-Basurto, BioBizkaia, 48013 Bilbao, Bizkaia, Spain
| | - Francisco Santaolalla Montoya
- Otorhinolaryngology Service, Basurto University Hospital, OSI Bilbao-Basurto, BioBizkaia, 48013 Bilbao, Bizkaia, Spain
- Otorhinolaryngology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Javier Aitor Zabala
- Otorhinolaryngology Service, Basurto University Hospital, OSI Bilbao-Basurto, BioBizkaia, 48013 Bilbao, Bizkaia, Spain
- Otorhinolaryngology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Ane Arrizabalaga-Iriondo
- Physiology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Miren Revuelta
- Physiology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Ana Sánchez Del Rey
- Otorhinolaryngology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
2
|
Barbara M, Margani V, Covelli E, Filippi C, Volpini L, El-Borady OM, El-Kemary M, Elzayat S, Elfarargy HH. The Use of Nanoparticles in Otoprotection. Front Neurol 2022; 13:912647. [PMID: 35968304 PMCID: PMC9364836 DOI: 10.3389/fneur.2022.912647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The inner ear can be insulted by various noxious stimuli, including drugs (cisplatin and aminoglycosides) and over-acoustic stimulation. These stimuli damage the hair cells giving rise to progressive hearing loss. Systemic drugs have attempted protection from ototoxicity. Most of these drugs poorly reach the inner ear with consequent ineffective action on hearing. The reason for these failures resides in the poor inner ear blood supply, the presence of the blood-labyrinthine barrier, and the low permeability of the round window membrane (RWM). This article presents a review of the use of nanoparticles (NPs) in otoprotection. NPs were recently used in many fields of medicine because of their ability to deliver drugs to the target organs or cells. The studies included in the review regarded the biocompatibility of the used NPs by in vitro and in vivo experiments. In most studies, NPs proved safe without a significant decrease in cell viability or signs of ototoxicity. Many nano-techniques were used to improve the drugs' kinetics and efficiency. These techniques included encapsulation, polymerization, surface functionalization, and enhanced drug release. In such a way, it improved drug transmission through the RWM with increased and prolonged intra-cochlear drug concentrations. In all studies, the fabricated drug-NPs effectively preserved the hair cells and the functioning hearing from exposure to different ototoxic stimuli, simulating the actual clinical circumstances. Most of these studies regarded cisplatin ototoxicity due to the wide use of this drug in clinical oncology. Dexamethasone (DEX) and antioxidants represent the most used drugs in most studies. These drugs effectively prevented apoptosis and reactive oxygen species (ROS) production caused by ototoxic stimuli. These various successful experiments confirmed the biocompatibility of different NPs and made it successfully to human clinical trials.
Collapse
Affiliation(s)
- Maurizio Barbara
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Valerio Margani
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Edoardo Covelli
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Chiara Filippi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luigi Volpini
- Otolaryngology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Saad Elzayat
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Haitham H. Elfarargy
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
- *Correspondence: Haitham H. Elfarargy ;
| |
Collapse
|
3
|
Petrova VA, Panevin AA, Zhuravskii SG, Gasilova ER, Vlasova EN, Romanov DP, Poshina DN, Skorik YA. Preparation of N-succinyl-chitin nanoparticles and their applications in otoneurological pathology. Int J Biol Macromol 2018; 120:1023-1029. [PMID: 30172812 DOI: 10.1016/j.ijbiomac.2018.08.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Succinyl-chitin (SCH) nanoparticles were obtained by acylation of partially deacetylated chitin (DCH) nanofibers. Introduction of the succinyl moiety induced a partial amorphization of DCH, as viewed by X-ray diffraction, and increased the fractal dimension of the colloids from df = 1.2 (DCH) to 1.5-1.7 (SCH), as revealed by light scattering. The spherically symmetric form of the colloids remained almost unchanged, as indicated by the range of structure-sensitive ratios 1.0 < Rg/Rh < 1.2; the hydrodynamic diameter ranged from 200 to 300 nm. The cytoprotective activity of the SCH nanoparticles was evaluated in vivo in an acute hearing pathology model (220-250 g male Wistar rats, n = 90) following prophylactic and therapeutic administrations. Ototropic action was estimated using the amplitude of otoacoustic emissions at the frequency of the distortion product otoacoustic emissions in the range of 4-6.4 kHz before acoustic stimulation, as well as at 1 h, 24 h, and 7 days after acoustic stimulation. A dispersion of 0.3% SCH nanoparticles demonstrated prolonged ototropic action and earlier regeneration of hearing functions when compared to a meglumine sodium succinate solution. Thus, intravenous administration of the SCH nanoparticles increases the cycling time of exogenous succinate and improves biodistribution in tissues possessing a hemato-labyrinth barrier.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Aleksey A Panevin
- Pavlov First Saint Petersburg State Medical University, ul. Lva Tolstogo 6/8, St. Petersburg 197022, Russian Federation; Institute of Experimental Medicine, Almazov National Medical Research Centre, ul. Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Sergei G Zhuravskii
- Pavlov First Saint Petersburg State Medical University, ul. Lva Tolstogo 6/8, St. Petersburg 197022, Russian Federation; Institute of Experimental Medicine, Almazov National Medical Research Centre, ul. Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Ekaterina R Gasilova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, nab. Adm. Makarova 2, St. Petersburg 199034, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Institute of Experimental Medicine, Almazov National Medical Research Centre, ul. Akkuratova 2, St. Petersburg 197341, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, St. Petersburg 198504, Russian Federation.
| |
Collapse
|