1
|
Yang Z, Zhang Y, Cao Z, Li Z, Zhang L, Yang L. Expression of Estrogen Receptors in Main Immune Organs in Sheep During Early Pregnancy. Int J Mol Sci 2025; 26:3528. [PMID: 40331991 PMCID: PMC12027075 DOI: 10.3390/ijms26083528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Estrogen exerts its action via estrogen receptors (ERs), including ERα and ERβ, and has effects on immunomodulation during pregnancy. It is known that there are changes in the function of the maternal immune organs during pregnancy. However, it is not clear if early pregnancy has effects on the expression of ERα and ERβ in the ovine maternal thymus, lymph nodes, spleen, and liver. In this study, these maternal immune organs were harvested at day 16 of the estrous cycle and at days 13, 16, and 25 of pregnancy (n = 6 for each group) after the ewes were euthanized. The mRNA and protein expression of ERα and ERβ were analyzed using real-time PCR and Western blot and immunohistochemical analyses. The results reveal that the mRNA and protein expression of both ERα and ERβ were upregulated in the maternal spleen and the expression of ERα and ERβ in the thymus, lymph nodes, and liver was modulated during early pregnancy. In conclusion, early pregnancy modulates the expression of ERα and ERβ in the maternal thymus, lymph nodes, spleen, and liver in a tissue-specific manner, which is related to the regulation of maternal immune function during early pregnancy in ewes.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Z.Y.); (Y.Z.); (Z.C.); (Z.L.); (L.Z.)
| |
Collapse
|
2
|
Zhou M, Shu Y, Gao J. Thymus Degeneration in Women and the Influence of Female Sexual Hormones on Thymic Epithelial Cells. Int J Mol Sci 2025; 26:3014. [PMID: 40243626 PMCID: PMC11988661 DOI: 10.3390/ijms26073014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The thymus is a central immune organ for T cell development and plays an extremely important role in immune and aging. The unique physiological processes that occur in women, such as the menstrual cycle, pregnancy, and menopause, contribute to sexual dimorphism in thymic immunity. Thymic epithelial cells (TECs) are key stromal cells that affect thymus development and degeneration. Interestingly, TECs in women have stronger proliferation potentiality and ability for output of T cells than those in men. In comparison to men, women exhibit higher susceptibility to autoimmune disease, which can be attributed to lower AIRE expression in the female thymus, which is influenced by fluctuating hormone levels. In this review, we summarize the principles of female thymus regulation by hormones, particularly the influence of female sex hormones in the development and function of TECs, as well as the underlying mechanisms, with the aim of providing new ideas and strategies to inhibit or slow down female thymus degeneration.
Collapse
Affiliation(s)
| | | | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (M.Z.); (Y.S.)
| |
Collapse
|
3
|
Nekrasova I, Glebezdina N, Maslennikova I, Danchenko I, Shirshev S. Estriol and commensal microflora strains regulate innate lymphoid cells functional activity in multiple sclerosis. Mult Scler Relat Disord 2024; 83:105453. [PMID: 38277978 DOI: 10.1016/j.msard.2024.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease in which the immune system attacks myelin basic protein of nerve axons. Recently, there has been growing interest in studying the role of a newly described population of immunity cells - innate lymphoid cells (ILCs) in the pathogenesis of the disease. At the same time, it was found that during pregnancy there is a weakening of Th1-mediated autoimmune pathologies manifestations, including MS. In this work, we studied phenotypic characteristics of ILC in MS patients in comparison with healthy donors after 48 h incubation with pregnancy hormone estriol (E3) and commensal microflora cells. To activate ILC, strains of Ecsherichia coli K12 and Lactobacillus plantarum 8R-A3 were used. ILC phenotype was assessed by flow cytometry using monoclonal antibody staining. It has been established that E3 and bacterial factors are able to regulate the maturation of ILC subtypes and their cytokines in different ways. In general, the studied factors influence the phenotypic changes in ILC cells, leading to the transition from one type to another, both in healthy donors and in MS patients.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia.
| | - Natalia Glebezdina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia
| | - Irina Maslennikova
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia; Perm State Medical University named after E.A. Wagner, Perm, Russia
| | - Irina Danchenko
- Perm State Medical University named after E.A. Wagner, Perm, Russia
| | - Sergei Shirshev
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia
| |
Collapse
|
4
|
Gorbunova O, Shirshev S. The effect of kisspeptin on the functional activity of peripheral blood monocytes and neutrophils in the context of physiological pregnancy. J Reprod Immunol 2022; 151:103621. [DOI: 10.1016/j.jri.2022.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
|
5
|
Wilson NR, Bover L, Konopleva M, Han L, Neelapu S, Pemmaraju N. CD303 (BDCA-2) - a potential novel target for therapy in hematologic malignancies. Leuk Lymphoma 2021; 63:19-30. [PMID: 34486917 DOI: 10.1080/10428194.2021.1975192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) serve as immunoregulatory antigen-presenting cells that play a role in various inflammatory, viral, and malignant conditions. Malignant proliferation of pDCs is implicated in the pathogenesis of certain hematologic cancers, specifically blastic plasmacytoid dendritic cell neoplasm (BPDCN) and acute myelogenous leukemia with clonal expansion of pDC (pDC-AML). In recent years, BPDCN and pDC-AML have been successfully treated with targeted therapy of pDC-specific surface marker, CD123. However, relapsed and refractory BPDCN remains an elusive cancer, with limited therapeutic options. CD303 is another specific surface marker of human pDCs, centrally involved in antigen presentation and immune tolerance. Monoclonal antibodies directed against CD303 have been studied in preclinical models and have achieved disease control in patients with cutaneous lupus erythematosus. We performed a comprehensive review of benign and malignant disorders in which CD303 have been studied, as there may be a potential future CD303-directed therapy for many of these conditions.
Collapse
Affiliation(s)
- Nathaniel R Wilson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Bover
- Departments of Genomic Medicine and Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lina Han
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Gorbunova OL, Shirshev SV. Role of Kisspeptin in Regulation of Reproductive and Immune Reactions. BIOCHEMISTRY (MOSCOW) 2021; 85:839-853. [PMID: 33045946 DOI: 10.1134/s0006297920080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The work is focused on physiological role of the hormone kisspeptin produced by neurons of the hypothalamus anterior zone, which is a key regulator of reproduction processes. Role of the hormone in transmission of information on metabolic activity and induction of the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus that determines gestation processes involving fertilization, placentation, fetal development, and child birth is considered. The literature data on molecular mechanisms and effects of kisspeptin on reproductive system including puberty initiation are summarized and analyzed. In addition, attention is paid to hormone-mediated changes in the cardiovascular system in pregnant women. For the first time, the review examines the effect of kisspeptin on functional activity of immune system cells presenting molecular mechanisms of the hormone signal transduction on the level of lymphoid cells that lead to the immune tolerance induction. In conclusion, a conceptual model is presented that determines the role of kisspeptin as an integrator of reproductive and immune functions during pregnancy.
Collapse
Affiliation(s)
- O L Gorbunova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| | - S V Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia
| |
Collapse
|
7
|
Zhao Y, Zheng Q, Jin L. The Role of B7 Family Molecules in Maternal-Fetal Immunity. Front Immunol 2020; 11:458. [PMID: 32265918 PMCID: PMC7105612 DOI: 10.3389/fimmu.2020.00458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is a complex but well-arranged process, and a healthy fetus requires immune privilege and surveillance in the presence of paternally derived antigens. Maternal and fetal cells interact at the maternal–fetal interface. The upregulation and downregulation of maternal immunity executed by the leukocyte population predominantly depend on the activity of decidual natural killer cells and trophoblasts and are further modulated by a series of duplex signals. The B7 family, which consists of B7-1, B7-2, B7-H1, B7-DC, B7-H2, B7-H3, B7-H4, B7-H5, BTNL2, B7-H6, and B7-H7, is one of the most characterized and widely distributed signaling molecule superfamilies and conducts both stimulatory and inhibitory signals through separate interactions. In particular, the roles of B7-1, B7-2, B7-H1, and their corresponding receptors in the progression of normal pregnancy and some pregnancy complications have been extensively studied. Together with the TCR–MHC complex, B7 and its receptors play a critical role in cell proliferation and cytokine secretion. Depending on this ligand–receptor crosstalk, the balance between the tolerance and rejection of the fetus is perfectly maintained. This review aims to provide an overview of the current knowledge of the B7 family and its functions in regulating maternal–fetal immunity through individual interactions.
Collapse
Affiliation(s)
- Yongbo Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Schumacher A, Zenclussen AC. Human Chorionic Gonadotropin-Mediated Immune Responses That Facilitate Embryo Implantation and Placentation. Front Immunol 2019; 10:2896. [PMID: 31921157 PMCID: PMC6914810 DOI: 10.3389/fimmu.2019.02896] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) serves as one of the first signals provided by the embryo to the mother. Exactly at the time when the first step of the implantation process is initiated and the blastocyst adheres to the maternal endometrium, the embryonic tissue starts to actively secrete hCG. Shortly thereafter, the hormone can be detected in the maternal circulation where its concentration steadily increases throughout early pregnancy as it is continuously released by the forming placenta. Accumulating evidence underlines the critical function of hCG for embryo implantation and placentation. hCG not only regulates biological aspects of these early pregnancy events but also supports maternal immune cells in their function as helpers in the establishment of an adequate embryo-endometrial relationship. In view of its early presence in the maternal circulation, hCG has the potential to influence both local uterine immune cell populations as well as peripheral ones. The current review aims to summarize recent literature on the participation of innate and adaptive immune cells in embryo implantation and placentation with a specific focus on their regulation by hCG.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|