1
|
Transcriptome Analysis of the Immortal Human Keratinocyte HaCaT Cell Line Damaged by Tritiated Water. BIOLOGY 2023; 12:biology12030405. [PMID: 36979097 PMCID: PMC10045445 DOI: 10.3390/biology12030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/05/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Radioactive elements, such as tritium, have been released into the ocean in large quantities as a result of the reactor leakage accident. In this study, an MTT assay demonstrated that the viability of HacaT cells decreased after tritiated water treatment. Bioinformatics analysis was used to analyze gene changes in the HacaT cells. The sequencing results showed 267 significantly differentially expressed genes (DEGs), and GO enrichment analysis showed that the DEGs were mainly divided into three parts. The KEGG pathway analysis showed that the up-regulated DEGs were involved in Wnt and other pathways, while the down-regulated DEGs were involved in Jak–STAT and others. A Western blot assay was used to verify the parts of the sequencing results. This study was the first to explore the mechanism of tritiated water on HacaT cells using Transcriptome analysis. The results will provide a theoretical basis for the study of tritiated water hazard mechanisms.
Collapse
|
2
|
Mentana A, Lamartinière Y, Orsière T, Malard V, Payet M, Slomberg D, Guardamagna I, Lonati L, Grisolia C, Jha A, Lebaron-Jacobs L, Rose J, Ottolenghi A, Baiocco G. Tritiated Steel Micro-Particles: Computational Dosimetry and Prediction of Radiation-Induced DNA Damage for In Vitro Cell Culture Exposures. Radiat Res 2023; 199:25-38. [PMID: 36442022 DOI: 10.1667/rade-22-00043.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | | | - Danielle Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Jerome Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Andrea Ottolenghi
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Tightly Focused Femtosecond Laser Radiation Induces DNA Double-Strand Breaks in Human Tumor Cells. Bull Exp Biol Med 2022; 172:743-746. [PMID: 35501653 DOI: 10.1007/s10517-022-05469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 10/18/2022]
Abstract
We studied the formation of double-strand DNA breaks (DNA DSB) induced by femtosecond laser radiation in A549 human lung adenocarcinoma cells using immunocytochemical staining of the resulting tracks of a specific DSB marker protein phosphorylated ATM kinase (phospho-ATM). Additionally, colocalization of phospho-ATM tracks with γH2AX protein tracks was studied. The results of immunocytochemical analysis showed that 30 min after irradiation of cells with femtosecond pulses with energies of 1 and 2 nJ (radiation power density 2×1011 and 4×1011 W×cm-2, respectively), the formation of tracks consisting of phospho-ATM and γH2AX proteins located in sites where the laser beam passes through the cell nuclei was observed. The presence of phospho-ATM tracks co-localized with γH2AX allows us to conclude that exposure to focused femtosecond infrared laser radiation with a pulse energy of 1-2 nJ leads to the formation of DNA DSB in irradiated cells.
Collapse
|
4
|
Rodneva SM, Osipov AA, Guryev DV, Tsishnatti AA, Fedotov YА, Yashkina EI, Vorobyova NY, Maksimov AA, Kochetkov OA, Samoylov AS, Osipov AN. Comparative Study of the γH2AX Foci Forming in Human Lung Fibroblasts Incubated in Media Containing Tritium-Labeled Thymidine or Amino Acids. Bull Exp Biol Med 2021; 172:245-249. [PMID: 34853973 DOI: 10.1007/s10517-021-05370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/30/2022]
Abstract
We compared the formation of γH2AX foci (marker of DNA double-strand breaks) in human lung fibroblasts (MRC-5 line) during their 24-h incubation in a medium containing 3H-labeled thymidine or amino acids (glycine, alanine, and proline) with specific radioactivity from 100 to 400 MBq/liter. A linear dependence of changes in the number of γH2AX foci on the specific radioactivity of the medium was revealed. The quantitative yield of DNA double-strand breaks under the influence of 3H-thymidine was more than 2-fold higher than under the influence of 3H-labeled amino acids. Comparative analysis of the yields of DNA double-strand breaks during cell incubation with 3H-labeled amino acids showed that 3H-alanine produced more pronounced effect that 3H-proline, which is consistent with the data on the content of their non-radioactive analogs in chromatin proteins.
Collapse
Affiliation(s)
- S M Rodneva
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - A A Osipov
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia.,N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - D V Guryev
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia. .,N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - A A Tsishnatti
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - Y А Fedotov
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia.,N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - E I Yashkina
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - N Y Vorobyova
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia.,N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - A A Maksimov
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - O A Kochetkov
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - A S Samoylov
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - A N Osipov
- A. I. Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency, Moscow, Russia.,N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Colony-Forming Ability and Residual Foci of DNA Repair Proteins in Human Lung Fibroblasts Irradiated with Subpicosecond Beams of Accelerated Electrons. Bull Exp Biol Med 2021; 172:22-25. [PMID: 34792714 DOI: 10.1007/s10517-021-05323-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/05/2023]
Abstract
We performed a comparative study of the colony-forming ability and the number of residual foci of DNA repair proteins in cultured human lung fibroblasts (MRC-5 cell line) after exposure to subpicosecond beams of accelerated electrons with an energy of 3.6 MeV and quasi-continuous radiation (accelerated electrons with an energy of 4 MeV and X-rays). The yield of damages causing reproductive cell death after pulsed subpicosecond radiation exposure was higher by ~1.8 times than after quasi-continuous radiation exposure. The quantitative yield of residual γH2AX foci (phosphorylated H2AX histone, a protein marker of DNA double breaks) in cells irradiated with subpicosecond beams of accelerated electrons was shown to be ~2.0- 2.5-fold higher than in cells irradiated with quasi-continuous beams of accelerated electrons.
Collapse
|
6
|
Baiocco G, George I, Garcia-Argote S, Guardamagna I, Lonati L, Lamartinière Y, Orsière T, Rousseau B, Ottolenghi A, Jha A, Lebaron-Jacobs L, Grisolia C, Malard V. A 3D In Vitro Model of the Human Airway Epithelium Exposed to Tritiated Water: Dosimetric Estimate and Cytotoxic Effects. Radiat Res 2021; 195:265-274. [PMID: 33400793 DOI: 10.1667/rade-20-00208.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 11/03/2022]
Abstract
Tritium has been receiving worldwide attention, particularly because of its production and use in existing fission reactors and future nuclear fusion technologies, leading to an increased risk of release in the environment. Linking human health effects to low-dose tritium exposures presents a challenge for many reasons. Among these: biological effects strongly depend on the speciation of tritiated products and exposure pathway; large dosimetric uncertainties may exist; measurements using in vitro cell cultures generally lack a description of effects at the tissue level, while large-scale animal studies might be ethically questionable and too highly demanding in terms of resources. In this context, three-dimensional models of the human airway epithelium are a powerful tool to investigate potential toxicity induced upon inhalation of radioactive products in controlled physiological conditions. In this study we exposed such a model to tritiated water (HTO) for 24 h, with a range of activity levels (up to ∼33 kBq µl-1 cm-2). After the exposures, we measured cell viability, integrity of epithelial layer and pro-inflammatory response at different post-exposure time-points. We also quantified tritium absorption and performed dosimetric estimates considering HTO passage through the epithelial layer, leading to reconstructed upper limits for the dose to the tissue of less than 50 cGy cumulative dose for the highest activity. Upon exposure to the highest activity, cell viability was not decreased; however, we observed a small effect on epithelial integrity and an inflammatory response persisting after seven days. These results represent a reference condition and will guide future experiments using human airway epithelium to investigate the effects of other peculiar tritiated products.
Collapse
Affiliation(s)
- Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Isabelle George
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191, Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191, Gif-sur-Yvette, France
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Thierry Orsière
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Bernard Rousseau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191, Gif-sur-Yvette, France
| | - Andrea Ottolenghi
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | | | - Véronique Malard
- Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
7
|
Yukhimchuk АА. Tritium-Related Activities in the Russian Federation. FUSION SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/15361055.2020.1728174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- А. А. Yukhimchuk
- Russian Federal Nuclear Center (RFNC-VNIIEF), 37, Mira Avenue, 607188, Sarov, Nizhni Novgorod Region, Russia
| |
Collapse
|