1
|
Wang Y, Huang D, Li M, Yang M. MicroRNA-99 family in cancer: molecular mechanisms for clinical applications. PeerJ 2025; 13:e19188. [PMID: 40161350 PMCID: PMC11955196 DOI: 10.7717/peerj.19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA sequences that regulate gene expression post-transcriptionally. The miR-99 family, which is highly evolutionarily conserved, comprises three homologs: miR-99a, miR-99b, and miR-100. Its members are under-expressed in most cancerous tissues, suggesting their cancer-repressing properties in multiple cancers; however, in some contexts, they also promote malignant lesion progression. MiR-99 family members target numerous genes involved in various tumor-related processes such as tumorigenesis, proliferation, cell-cycle regulation, apoptosis, invasion, and metastasis. We review the recent research on this family, summarize its implications in cancer, and explore its potential as a biomarker and cancer therapeutic target. This review contributes to the clinical translation of the miR-99 family members.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Dan Huang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
2
|
Phannasil P, Akekawatchai C, Jitrapakdee S. MicroRNA expression profiles associated with the metastatic ability of MDA‑MB‑231 breast cancer cells. Oncol Lett 2023; 26:339. [PMID: 37427352 PMCID: PMC10326657 DOI: 10.3892/ol.2023.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is an important worldwide public health concern. The incidence rate of breast cancer increases every year. The primary cause of death is metastasis, a process by which cancer cells spread from a primary site to secondary organs. MicroRNAs (miRs/miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional level. Dysregulation of certain miRNAs is involved in carcinogenesis, cancer cell proliferation and metastasis. Therefore, the present study assessed miRNAs associated with breast cancer metastasis using two breast cancer cell lines, the low-metastatic MCF-7 and the highly metastatic MDA-MB-231. miRNA array analysis of both cell lines indicated that 46 miRNAs were differentially expressed when compared between the two cell lines. A total of 16 miRNAs were upregulated in MDA-MB-231 compared with MCF-7 cells, which suggested that their expression levels may be associated with the highly invasive phenotype of MDA-MB-231 cells. Among these miRNAs, miR-222-3p was selected for further study and its expression was confirmed by reverse transcription-quantitative PCR (RT-qPCR). Under both non-adherent and adherent culture conditions, the expression levels of miR-222-3p in the MDA-MB-231 cell line were higher than those noted in the MCF-7 cell line under the same conditions. Suppression of endogenous miR-222-3p expression in MDA-MB-231 cells using a miR-222-3p inhibitor resulted in a 20-40% reduction in proliferation, and a ~30% reduction in migration, which suggested that the aggressive phenotype of MDA-MB-231 cells was partly regulated by miR-222-3p. Bioinformatic analysis of miR-222-3p using TargetScan 8.0, miRDB and PicTar identified 25 common mRNA targets, such as cyclin-dependent kinase inhibitor 1B, ADP-ribosylation factor 4, iroquois homeobox 5 and Bcl2 modifying factor. The results of the present study indicated that miR-222-3p was potentially associated with the proliferation and migratory ability of the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12121, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|
4
|
ZeinElAbdeen YA, AbdAlSeed A, Youness RA. Decoding Insulin-Like Growth Factor Signaling Pathway From a Non-coding RNAs Perspective: A Step Towards Precision Oncology in Breast Cancer. J Mammary Gland Biol Neoplasia 2022; 27:79-99. [PMID: 35146629 DOI: 10.1007/s10911-022-09511-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a highly complex and heterogenous disease. Several oncogenic signaling pathways drive BC oncogenic activity, thus hindering scientists to unravel the exact molecular pathogenesis of such multifaceted disease. This highlights the urgent need to find a key regulator that tunes up such intertwined oncogenic drivers to trim the malignant transformation process within the breast tissue. The Insulin-like growth factor (IGF) signaling pathway is a tenacious axis that is heavily intertwined with BC where it modulates the amplitude and activity of vital downstream oncogenic signaling pathways. Yet, the complexity of the pathway and the interactions driven by its different members seem to aggravate its oncogenicity and hinder its target-ability. In this review, the authors shed the light on the stubbornness of the IGF signaling pathway and its potential regulation by non-coding RNAs in different BC subtypes. Nonetheless, this review also spots light on the possible transport systems available for efficient delivery of non-coding RNAs to their respective targets to reach a personalized treatment code for BC patients.
Collapse
Affiliation(s)
- Yousra Ahmed ZeinElAbdeen
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
| | - Amna AbdAlSeed
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
- University of Khartoum, Al-Gama a Avenue, 11115, Khartoum, Sudan
| | - Rana A Youness
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, 11586, Egypt.
| |
Collapse
|
5
|
Fachim HA, Loureiro CM, Siddals K, Dalton CF, Reynolds GP, Gibson JM, Chen ZB, Heald AH. Circulating microRNA changes in patients with impaired glucose regulation. Adipocyte 2020; 9:443-453. [PMID: 32752917 PMCID: PMC7469475 DOI: 10.1080/21623945.2020.1798632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We analysed if levels of four miRNAs would change after a lifestyle intervention involving dietary and exercises in prediabetes. MiRNAs previously shown to be associated with diabetes (Let-7a, Let-7e, miR-144 and miR-92a) were extracted from serum pre- and post-intervention. mRNA was extracted from fat-tissue for gene expression analyses. The intervention resulted in increased Let-7a and miR-92a. We found correlations between miRNAs and clinical variables (triglycerides, cholesterol, insulin, weight and BMI). We also found correlations between miRNAs and target genes, revealing a link between miR-92a and IGF system. A lifestyle intervention resulted in marked changes in miRNAs. The association of miRNAs with insulin and the IGF system (both receptors and binding proteins) may represent a mechanism of regulating IGFs metabolic actions.
Collapse
Affiliation(s)
- Helene A. Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Camila M. Loureiro
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kirk Siddals
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - J. Martin Gibson
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adrian H. Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| |
Collapse
|
6
|
Shkurnikov M, Nikulin S, Nersisyan S, Poloznikov A, Zaidi S, Baranova A, Schumacher U, Wicklein D, Tonevitsky A. LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer. Front Mol Biosci 2019; 6:122. [PMID: 31781574 PMCID: PMC6857517 DOI: 10.3389/fmolb.2019.00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Specificity of RNAi to selected target is challenged by off-target effects, both canonical and non-canonical. Notably, more than half of all human microRNAs are co-expressed with hosting them proteincoding genes. Here we dissect regulatory subnetwork centered on IGFBP6 gene, which is associated with low proliferative state and high migratory activity of basal-like breast cancer. We inhibited expression of IGFBP6 gene in a model cell line for basal-like breast carcinoma MDA-MB-231, then traced secondary and tertiary effects of this knockdown to LAMA4, a laminin encoding gene that contributes to the phenotype of triple-negative breast cancer. LAMA4-regulating miRNA miR-4274 and its host gene SORCS2 were highlighted as intermediate regulators of the expression levels of LAMA4, which correlated in a basal-like breast carcinoma sample subset of TCGA to the levels of SORCS2 negatively. Overall, our study points that the secondary and tertiary layers of regulatory interactions are certainly underappreciated. As these types of molecular event may significantly contribute to the formation of the cell phenotypes after RNA interference based knockdowns, further studies of multilayered molecular networks affected by RNAi are warranted.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninks, Russia
| | | | - Stepan Nersisyan
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninks, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Center of Medical Genetics, Moscow, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Art Photonics GmbH, Berlin, Germany
| |
Collapse
|