1
|
Ramirez-Moreno D, Galizia CG, Nouvian M. Division of labour during honeybee colony defence: poetic and scientific views. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230272. [PMID: 40109103 PMCID: PMC11923620 DOI: 10.1098/rstb.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 03/22/2025] Open
Abstract
Poets, philosophers and politicians have used bees, and often projected an idealized human society into their view of how beehives are organized, from the ancient Greeks to present times. We first review how division of labour in honeybees was perceived by human observers, before presenting our current understanding. We focus specifically on defensive behaviour and show that this model provides an interesting case study for our conceptual understanding of division of labour as a whole. We distinguish three phases of the defensive response: detection of an intruder, recruitment of individuals into collective defence and attack. Individual bees may selectively contribute to one or more of these steps. Guard bees monitor entering conspecifics or attacking mammals, and release an alarm pheromone to recruit stinging soldiers. However, we are still far from understanding why only subsets of bees become guards or soldiers (or even if soldiering can be considered a task per se). We discuss the stimuli associated with each of these steps, how they define the number of bees needed and how they might combine with individual and developmental characteristics such that individuals take on a particular task. We also highlight pending questions and interesting avenues for future research.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Daniela Ramirez-Moreno
- Department of Biology, University of Konstanz, Konstanz D-78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz D-78457, Germany
| | - C Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz D-78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz D-78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz D-78457, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz D-78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz D-78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz D-78457, Germany
| |
Collapse
|
2
|
Kannan K, Galizia CG, Nouvian M. Consistency and individuality of honeybee stinging behaviour across time and social contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241295. [PMID: 39881791 PMCID: PMC11774586 DOI: 10.1098/rsos.241295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Whether individuals exhibit consistent behavioural variation is a central question in the field of animal behaviour. This question is particularly interesting in the case of social animals, as their behaviour may be strongly modulated by the collective. In this study, we ask whether honeybees exhibit individual differences in stinging behaviour. We demonstrate that bees are relatively stable in their decision to sting-or not-in a specific context and show temporal consistency suggestive of an internal state modulation. We also investigated how social factors such as the alarm pheromone or another bee modulated this behaviour. The presence of alarm pheromone increased the likelihood of a bee to sting but this response decayed over trials, while the presence of a conspecific decreased individual stinging likelihood. These factors, however, did not alter stinging consistency. We therefore propose that social modulation acts by shifting the stinging threshold of individuals. Finally, experimental manipulation of group composition with respect to the ratio of aggressive and gentle bees within a group did not affect the behaviour of focal bees. Overall, our results establish honeybee stinging behaviour as a promising model for studying mechanistically how collective and individual traits interact to regulate individual variability.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- International Max Plank Research School for Quantitative Behaviour Ecology and Evolution, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Olney KC, Gibson JD, Natri HM, Underwood A, Gadau J, Wilson MA. Lack of parent-of-origin effects in Nasonia jewel wasp: A replication and extension study. PLoS One 2021; 16:e0252457. [PMID: 34111141 PMCID: PMC8191985 DOI: 10.1371/journal.pone.0252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022] Open
Abstract
In diploid cells, the paternal and maternal alleles are, on average, equally expressed. There are exceptions from this: a small number of genes express the maternal or paternal allele copy exclusively. This phenomenon, known as genomic imprinting, is common among eutherian mammals and some plant species; however, genomic imprinting in species with haplodiploid sex determination is not well characterized. Previous work reported no parent-of-origin effects in the hybrids of closely related haplodiploid Nasonia vitripennis and Nasonia giraulti jewel wasps, suggesting a lack of epigenetic reprogramming during embryogenesis in these species. Here, we replicate the gene expression dataset and observations using different individuals and sequencing technology, as well as reproduce these findings using the previously published RNA sequence data following our data analysis strategy. The major difference from the previous dataset is that they used an introgression strain as one of the parents and we found several loci that resisted introgression in that strain. Our results from both datasets demonstrate a species-of-origin effect, rather than a parent-of-origin effect. We present a reproducible workflow that others may use for replicating the results. Overall, we reproduced the original report of no parent-of-origin effects in the haplodiploid Nasonia using the original data with our new processing and analysis pipeline and replicated these results with our newly generated data.
Collapse
Affiliation(s)
- Kimberly C. Olney
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Joshua D. Gibson
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Heini M. Natri
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Avery Underwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Juergen Gadau
- Institut fuer Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ostroverkhova NV. Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Vet Sci 2020; 8:vetsci8010002. [PMID: 33383841 PMCID: PMC7823830 DOI: 10.3390/vetsci8010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
The microsporidian Nosema parasites, primarily Nosema ceranae, remain critical threats to the health of the honey bee Apis mellifera. One promising intervention approach is the breeding of Nosema-resistant honey bee colonies using molecular technologies, for example marker-assisted selection (MAS). For this, specific genetic markers used in bee selection should be developed. The objective of the paper is to search for associations between some microsatellite markers and Nosema disease in a dark forest bee Apis mellifera mellifera. For the dark forest bee, the most promising molecular genetic markers for determining resistance to nosemosis are microsatellite loci AC117, Ap243 and SV185, the alleles of which (“177”, “263” and “269”, respectively) were associated with a low level of Nosema infection. This article is the first associative study aimed at finding DNA loci of resistance to nosemosis in the dark forest bee. Nevertheless, microsatellite markers identified can be used to predict the risk of developing the Nosema disease.
Collapse
Affiliation(s)
- Nadezhda V. Ostroverkhova
- Invertebrate Zoology Department, Biology Institute, National Research Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia; ; Tel.: +7-3822-529-461
- Department of Biology and Genetics, Siberian State Medical University, 2 Moskovsky Trakt, 634055 Tomsk, Russia
| |
Collapse
|
5
|
Yunusbaev UB, Kaskinova MD, Ilyasov RA, Gaifullina LR, Saltykova ES, Nikolenko AG. The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541906019x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Pegoraro M, Marshall H, Lonsdale ZN, Mallon EB. Do social insects support Haig's kin theory for the evolution of genomic imprinting? Epigenetics 2018; 12:725-742. [PMID: 28703654 PMCID: PMC5739101 DOI: 10.1080/15592294.2017.1348445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.
Collapse
Affiliation(s)
- Mirko Pegoraro
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Hollie Marshall
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Zoë N Lonsdale
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Eamonn B Mallon
- a Department of Genetics and Genome Biology , University of Leicester , UK
| |
Collapse
|
7
|
Nouvian M, Reinhard J, Giurfa M. The defensive response of the honeybee Apis mellifera. ACTA ACUST UNITED AC 2017; 219:3505-3517. [PMID: 27852760 DOI: 10.1242/jeb.143016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Honeybees (Apis mellifera) are insects living in colonies with a complex social organization. Their nest contains food stores in the form of honey and pollen, as well as the brood, the queen and the bees themselves. These resources have to be defended against a wide range of predators and parasites, a task that is performed by specialized workers, called guard bees. Guards tune their response to both the nature of the threat and the environmental conditions, in order to achieve an efficient trade-off between defence and loss of foraging workforce. By releasing alarm pheromones, they are able to recruit other bees to help them handle large predators. These chemicals trigger both rapid and longer-term changes in the behaviour of nearby bees, thus priming them for defence. Here, we review our current understanding on how this sequence of events is performed and regulated depending on a variety of factors that are both extrinsic and intrinsic to the colony. We present our current knowledge on the neural bases of honeybee aggression and highlight research avenues for future studies in this area. We present a brief overview of the techniques used to study honeybee aggression, and discuss how these could be used to gain further insights into the mechanisms of this behaviour.
Collapse
Affiliation(s)
- Morgane Nouvian
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia .,Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse cedex 9, 31062, France
| | - Judith Reinhard
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse cedex 9, 31062, France
| |
Collapse
|
8
|
Testing the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Proc Natl Acad Sci U S A 2016; 113:1020-5. [PMID: 26755583 DOI: 10.1073/pnas.1516636113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sexual reproduction brings genes from two parents (matrigenes and patrigenes) together into one individual. These genes, despite being unrelated, should show nearly perfect cooperation because each gains equally through the production of offspring. However, an individual's matrigenes and patrigenes can have different probabilities of being present in other relatives, so kin selection could act on them differently. Such intragenomic conflict could be implemented by partial or complete silencing (imprinting) of an allele by one of the parents. Evidence supporting this theory is seen in offspring-mother interactions, with patrigenes favoring acquisition of more of the mother's resources if some of the costs fall on half-siblings who do not share the patrigene. The kinship theory of intragenomic conflict is little tested in other contexts, but it predicts that matrigene-patrigene conflict may be rife in social insects. We tested the hypothesis that honey bee worker reproduction is promoted more by patrigenes than matrigenes by comparing across nine reciprocal crosses of two distinct genetic stocks. As predicted, hybrid workers show reproductive trait characteristics of their paternal stock, (indicating enhanced activity of the patrigenes on these traits), greater patrigenic than matrigenic expression, and significantly increased patrigenic-biased expression in reproductive workers. These results support both the general prediction that matrigene-patrigene conflict occurs in social insects and the specific prediction that honey bee worker reproduction is driven more by patrigenes. The success of these predictions suggests that intragenomic conflict may occur in many contexts where matrigenes and patrigenes have different relatednesses to affected kin.
Collapse
|
9
|
Gibson JD, Arechavaleta-Velasco ME, Tsuruda JM, Hunt GJ. Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling. Front Genet 2015; 6:343. [PMID: 26648977 PMCID: PMC4664729 DOI: 10.3389/fgene.2015.00343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022] Open
Abstract
Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent’s allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation.
Collapse
Affiliation(s)
- Joshua D Gibson
- Department of Entomology, Purdue University, West Lafayette IN, USA
| | - Miguel E Arechavaleta-Velasco
- CENID-Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias México, Mexico
| | | | - Greg J Hunt
- Department of Entomology, Purdue University, West Lafayette IN, USA
| |
Collapse
|
10
|
Chapman NC, Harpur BA, Lim J, Rinderer TE, Allsopp MH, Zayed A, Oldroyd BP. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry. Mol Ecol Resour 2015; 15:1346-55. [PMID: 25846634 DOI: 10.1111/1755-0998.12411] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.
Collapse
Affiliation(s)
- Nadine C Chapman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia
| | - Brock A Harpur
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3
| | - Julianne Lim
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas E Rinderer
- Honey-bee Breeding Genetics and Physiology Research Laboratory, USDA-ARS, 1157 Ben Hur Road, Baton Rouge, LA, 70820, USA
| | - Michael H Allsopp
- ARC-Plant Protection Research Institute, Stellenbosch, 7599, South Africa
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|