1
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Fraimout A, Päiviö E, Merilä J. Relaxed risk of predation drives parallel evolution of stickleback behavior. Evolution 2022; 76:2712-2723. [PMID: 36117280 PMCID: PMC9827860 DOI: 10.1111/evo.14631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/22/2023]
Abstract
The occurrence of similar phenotypes in multiple independent populations derived from common ancestral conditions (viz. parallel evolution) is a testimony of evolution by natural selection. Parallel evolution implies that populations share a common phenotypic response to a common selection pressure associated with habitat similarity. Examples of parallel evolution at genetic and phenotypic levels are fairly common, but the driving selective agents often remain elusive. Similarly, the role of phenotypic plasticity in facilitating early stages of parallel evolution is unclear. We investigated whether the relaxation of predation pressure associated with the colonization of freshwater ponds by nine-spined sticklebacks (Pungitius pungitius) likely explains the divergence in complex behaviors between marine and pond populations, and whether this divergence is parallel. Using laboratory-raised individuals exposed to different levels of perceived predation risk, we calculated vectors of phenotypic divergence for four behavioral traits between habitats and predation risk treatments. We found a significant correlation between the directions of evolutionary divergence and phenotypic plasticity, suggesting that divergence in behavior between habitats is aligned with the response to relaxation of predation pressure. Finally, we show alignment across multiple pairs of populations, and that relaxation of predation pressure has likely driven parallel evolution of behavior in this species.
Collapse
Affiliation(s)
- Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland,Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SAR
| | - Elisa Päiviö
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland,Area of Ecology and Biodiversity, School of Biological SciencesThe University of Hong KongHong Kong SAR
| |
Collapse
|
3
|
Horváth G, Sztruhala SS, Balázs G, Herczeg G. Population divergence in aggregation and sheltering behaviour in surface- versus cave-adapted Asellus aquaticus (Crustacea: Isopoda). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Aggregation (gathering together) and sheltering (hiding in cover) are basic behaviours that can reduce the risk of predation. However, both behaviours have costs, such as increased competition over resources and high prevalence of contact-spread parasites (aggregation) or lost opportunities for foraging and mating (sheltering). Therefore, variation in these behaviours is expected between populations with varying levels of predation risk. We compared aggregation and sheltering in surface- (various predators) and cave-adapted (no predator) populations of the isopod Asellus aquaticus in a common garden experiment. Given that the cave environment is constantly dark, we also tested for population variation in light-induced behavioural plasticity. Variation in sheltering was explained by habitat type: cave individuals sheltered less than surface individuals. We found high between-population variation in aggregation with or without shelters and their light-induced plasticity, which was not explained by habitat type. Cave individuals decreased (habituation) whereas surface individuals increased sheltering with time (sensitization). We suggest that population variation in sheltering is driven by predation, whereas variation in aggregation must be driven by other, unaccounted environmental factors, in a similar manner to light-induced behavioural plasticity. Based on habituation/sensitization patterns, we suggest that predation-adapted populations are more sensitive to disturbance related to routine laboratory procedures.
Collapse
Affiliation(s)
- Gergely Horváth
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary
| | - Sára Sarolta Sztruhala
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary
| | - Gergely Balázs
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary
| |
Collapse
|
4
|
Carlson BM, Klingler IB, Meyer BJ, Gross JB. Genetic analysis reveals candidate genes for activity QTL in the blind Mexican tetra, Astyanax mexicanus. PeerJ 2018; 6:e5189. [PMID: 30042884 PMCID: PMC6054784 DOI: 10.7717/peerj.5189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
Animal models provide useful tools for exploring the genetic basis of morphological, physiological and behavioral phenotypes. Cave-adapted species are particularly powerful models for a broad array of phenotypic changes with evolutionary, developmental and clinical relevance. Here, we explored the genetic underpinnings of previously characterized differences in locomotor activity patterns between the surface-dwelling and Pachón cave-dwelling populations of Astyanax mexicanus. We identified multiple novel QTL underlying patterns in overall levels of activity (velocity), as well as spatial tank use (time spent near the top or bottom of the tank). Further, we demonstrated that different regions of the genome mediate distinct patterns in velocity and tank usage. We interrogated eight genomic intervals underlying these activity QTL distributed across six linkage groups. In addition, we employed transcriptomic data and draft genomic resources to generate and evaluate a list of 36 potential candidate genes. Interestingly, our data support the candidacy of a number of genes, but do not suggest that differences in the patterns of behavior observed here are the result of alterations to certain candidate genes described in other species (e.g., teleost multiple tissue opsins, melanopsins or members of the core circadian clockwork). This study expands our knowledge of the genetic architecture underlying activity differences in surface and cavefish. Future studies will help define the role of specific genes in shaping complex behavioral phenotypes in Astyanax and other vertebrate taxa.
Collapse
Affiliation(s)
- Brian M Carlson
- Department of Biology, The College of Wooster, Wooster, OH, United States of America
| | - Ian B Klingler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bradley J Meyer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
5
|
Peichel CL, Marques DA. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0486. [PMID: 27994127 DOI: 10.1098/rstb.2015.0486] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
Abstract
A major goal of evolutionary biology is to identify the genotypes and phenotypes that underlie adaptation to divergent environments. Stickleback fish, including the threespine stickleback (Gasterosteus aculeatus) and the ninespine stickleback (Pungitius pungitius), have been at the forefront of research to uncover the genetic and molecular architecture that underlies phenotypic diversity and adaptation. A wealth of quantitative trait locus (QTL) mapping studies in sticklebacks have provided insight into long-standing questions about the distribution of effect sizes during adaptation as well as the role of genetic linkage in facilitating adaptation. These QTL mapping studies have also provided a basis for the identification of the genes that underlie phenotypic diversity. These data have revealed that mutations in regulatory elements play an important role in the evolution of phenotypic diversity in sticklebacks. Genetic and molecular studies in sticklebacks have also led to new insights on the genetic basis of repeated evolution and suggest that the same loci are involved about half of the time when the same phenotypes evolve independently. When the same locus is involved, selection on standing variation and repeated mutation of the same genes have both contributed to the evolution of similar phenotypes in independent populations.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Catherine L Peichel
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David A Marques
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
6
|
Habig B, Chiyo PI, Lahti DC. Male risk-taking is related to number of mates in a polygynous bird. Behav Ecol 2017. [DOI: 10.1093/beheco/arw187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Li Z, Guo B, Yang J, Herczeg G, Gonda A, Balázs G, Shikano T, Calboli FCF, Merilä J. Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach. Mol Ecol 2017; 26:1557-1575. [DOI: 10.1111/mec.14005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Zitong Li
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Baocheng Guo
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Jing Yang
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Gábor Herczeg
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
- Behavioural Ecology Group; Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány1/C 1117 Budapest Hungary
| | - Abigél Gonda
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Gergely Balázs
- Behavioural Ecology Group; Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány1/C 1117 Budapest Hungary
| | - Takahito Shikano
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Federico C. F. Calboli
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Juha Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| |
Collapse
|
8
|
Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel. Sci Rep 2016; 6:26632. [PMID: 27226078 PMCID: PMC4880927 DOI: 10.1038/srep26632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
Heritable phenotypic differences between populations, caused by the selective effects of distinct environmental conditions, are of commonplace occurrence in nature. However, the actual genomic targets of this kind of selection are still poorly understood. We conducted a quantitative trait locus (QTL) mapping study to identify genomic regions responsible for morphometric differentiation between genetically and phenotypically divergent marine and freshwater nine-spined stickleback (Pungitius pungitius) populations. Using a dense panel of SNP-markers obtained by restriction site associated DNA sequencing of an F2 recombinant cross, we found 22 QTL that explained 3.5-12.9% of phenotypic variance in the traits under investigation. We detected one fairly large-effect (PVE = 9.6%) QTL for caudal peduncle length-a trait with a well-established adaptive function showing clear differentiation among marine and freshwater populations. We also identified two large-effect QTL for lateral plate numbers, which are different from the lateral plate QTL reported in earlier studies of this and related species. Hence, apart from identifying several large-effect QTL in shape traits showing adaptive differentiation in response to different environmental conditions, the results suggest intra- and interspecific heterogeneity in the genomic basis of lateral plate number variation.
Collapse
|
9
|
Kitano J, Mori S. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks. Genes Genet Syst 2016; 91:77-84. [DOI: 10.1266/ggs.15-00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jun Kitano
- Division of Ecological Genetics, National Institute of Genetics
| | | |
Collapse
|
10
|
Genetic Basis Underlying Behavioral Correlation Between Fugu Takifugu rubripes and a Closely Related Species, Takifugu niphobles. Behav Genet 2015; 45:560-72. [PMID: 26067468 DOI: 10.1007/s10519-015-9728-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Correlated suits of behaviors (behavioral syndrome) are commonly observed in both inter- and intraspecific studies. In order to understand the genetic basis of such a correlation between species, we compared ten behaviors classified into five categories (acclimation, feeding, normal swimming, reaction to a novel object and activity in a novel environment) between two pufferfish species, Takifugu rubripes and T. niphobles. The two species showed consistent differences in nine behaviors with a significant correlation among behaviors. Quantitative trait locus (QTL) analysis using second generation hybrids revealed that different sets of small effect QTL are associated with the observed interspecific behavioral disparity. This indicates that correlations in temperament traits between them are governed by many genes with small effects, and each behavior has been selected to form particular combination patterns. One of the QTL showing small pleiotropic effect includes the Drd4 gene known for its association with behavioral traits in some animal taxa including mammals.
Collapse
|
11
|
Cavasini R, Batista MRD, Klaczko LB. Chromosomal localization of microsatellite loci in Drosophila mediopunctata. Genet Mol Biol 2015; 38:55-8. [PMID: 25983625 PMCID: PMC4415555 DOI: 10.1590/s1415-475738138120140275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/23/2014] [Indexed: 11/21/2022] Open
Abstract
Drosophila mediopunctata has been used as a model organism for
genetics and evolutionary studies in the last three decades. A linkage map with 48
microsatellite loci recently published for this species showed five syntenic groups,
which had their homology determined to Drosophila melanogaster
chromosomes. Then, by inference, each of the groups was associated with one of the
five major chromosomes of D. mediopunctata. Our objective was to
carry out a genetic (chromosomal) analysis to increase the number of available loci
with known chromosomal location. We made a simultaneous analysis of visible mutant
phenotypes and microsatellite genotypes in a backcross of a standard strain and a
mutant strain, which had each major autosome marked. Hence, we could establish the
chromosomal location of seventeen loci; including one from each of the five major
linkage groups previously published, and twelve new loci. Our results were congruent
with the previous location and they open new possibilities to future work integrating
microsatellites, chromosomal inversions, and genetic determinants of physiological
and morphological variation.
Collapse
Affiliation(s)
- Renato Cavasini
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcos Roberto Dias Batista
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Louis Bernard Klaczko
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
12
|
Greenwood AK, Ardekani R, McCann SR, Dubin ME, Sullivan A, Bensussen S, Tavaré S, Peichel CL. Genetic mapping of natural variation in schooling tendency in the threespine stickleback. G3 (BETHESDA, MD.) 2015; 5:761-9. [PMID: 25717151 PMCID: PMC4426364 DOI: 10.1534/g3.114.016519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/23/2015] [Indexed: 02/06/2023]
Abstract
Although there is a heritable basis for many animal behaviors, the genetic architecture of behavioral variation in natural populations remains mostly unknown, particularly in vertebrates. We sought to identify the genetic basis for social affiliation in two populations of threespine sticklebacks (Gasterosteus aculeatus) that differ in their propensity to school. Marine sticklebacks from Japan school strongly whereas benthic sticklebacks from a lake in Canada are more solitary. Here, we expanded on our previous efforts to identify quantitative trait loci (QTL) for differences in schooling tendency. We tested fish multiple times in two assays that test different aspects of schooling tendency: 1) the model school assay, which presents fish with a school of eight model sticklebacks; and 2) the choice assay, in which fish are given a choice between the model school and a stationary artificial plant. We found low-to-moderate levels of repeatability, ranging from 0.1 to 0.5, in schooling phenotypes. To identify the genomic regions that contribute to differences in schooling tendency, we used QTL mapping in two types of crosses: benthic × marine backcrosses and an F2 intercross. We found two QTL for time spent with the school in the model school assay, and one QTL for number of approaches to the school in the choice assay. These QTL were on three different linkage groups, not previously linked to behavioral differences in sticklebacks. Our results highlight the importance of using multiple crosses and robust behavioral assays to uncover the genetic basis of behavioral variation in natural populations.
Collapse
Affiliation(s)
- Anna K Greenwood
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Reza Ardekani
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Shaugnessy R McCann
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Matthew E Dubin
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Amy Sullivan
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Seth Bensussen
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Simon Tavaré
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Catherine L Peichel
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
13
|
Bruneaux M, Nikinmaa M, Laine VN, Lindström K, Primmer CR, Vasemägi A. Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius) populations from contrasting thermal environments. ACTA ACUST UNITED AC 2014; 321:550-65. [PMID: 25389079 DOI: 10.1002/jez.1889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/27/2014] [Accepted: 08/06/2014] [Indexed: 11/06/2022]
Abstract
Metabolic responses to temperature changes are crucial for maintaining the energy balance of an individual under seasonal temperature fluctuations. To understand how such responses differ in recently isolated populations (<11,000 years), we studied four Baltic populations of the nine-spined stickleback (Pungitius pungitius L.) from coastal locations (seasonal temperature range, 0-29°C) and from colder, more thermally stable spring-fed ponds (1-19°C). Salinity and predation pressure also differed between these locations. We acclimatized wild-caught fish to 6, 11, and 19°C in common garden conditions for 4-6 months and determined their aerobic scope and hepatosomatic index (HSI). The freshwater fish from the colder (2-14°C), predator-free pond population exhibited complete temperature compensation for their aerobic scope, whereas the coastal populations underwent metabolic rate reduction during the cold treatment. Coastal populations had higher HSI than the colder pond population at all temperatures, with cold acclimation accentuating this effect. The metabolic rates and HSI for freshwater fish from the pond with higher predation pressure were more similar to those of the coastal ones. Our results suggest that ontogenic effects and/or genetic differentiation are responsible for differential energy storage and metabolic responses between these populations. This work demonstrates the metabolic versatility of the nine-spined stickleback and the pertinence of an energetic framework to better understand potential local adaptations. It also demonstrates that instead of using a single acclimation temperature thermal reaction norms should be compared when studying individuals originating from different thermal environments in a common garden setting.
Collapse
Affiliation(s)
- Matthieu Bruneaux
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
14
|
Garamszegi LZ, Mueller JC, Markó G, Szász E, Zsebők S, Herczeg G, Eens M, Török J. The relationship between DRD4 polymorphisms and phenotypic correlations of behaviors in the collared flycatcher. Ecol Evol 2014; 4:1466-79. [PMID: 24834341 PMCID: PMC4020704 DOI: 10.1002/ece3.1041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that the genetic architecture of exploration behavior includes the dopamine receptor D4 gene (DRD4). Such a link implies that the within-individual consistency in the same behavior has a genetic basis. Behavioral consistency is also prevalent in the form of between-individual correlation of functionally different behaviors; thus, the relationship between DRD4 polymorphism and exploration may also be manifested for other behaviors. Here, in a Hungarian population of the collared flycatcher, Ficedula albicollis, we investigate how males with distinct DRD4 genotypes differ in the consistent elements of their behavioral displays during the courtship period. In completely natural conditions, we assayed novelty avoidance, aggression and risk-taking, traits that were previously shown repeatable over time and correlate with each other, suggesting that they could have a common mechanistic basis. We identified two single-nucleotide polymorphisms (SNP554 and SNP764) in the exon 3 of the DRD4 gene by sequencing a subsample, then we screened 202 individuals of both sexes for these SNPs. Focusing on the genotypic variation in courting males, we found that “AC” heterozygote individuals at the SNP764 take lower risk than the most common “AA” homozygotes (the “CC” homozygotes were not represented in our subsample of males). We also found a considerable effect size for the relationship between SNP554 polymorphism and novelty avoidance. Therefore, in addition to exploration, DRD4 polymorphisms may also be associated with the regulation of behaviors that may incur fear or stress. Moreover, polymorphisms at the two SNPs were not independent indicating a potential role for genetic constraints or another functional link, which may partially explain behavioral correlations.
Collapse
Affiliation(s)
- László Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC Seville, Spain
| | - Jakob C Mueller
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology Seewiesen, Germany
| | - Gábor Markó
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary ; Department of Plant Pathology, Corvinus University of Budapest Budapest, Hungary ; Ecology Research Group, Hungarian Academy of Sciences, Hungarian Natural History Museum Budapest, Hungary
| | - Eszter Szász
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary ; Ecology Research Group, Hungarian Academy of Sciences, Hungarian Natural History Museum Budapest, Hungary ; Université Paris-Sud, Centre de Neurosciences Paris-Sud UMR 8195, Orsay, France
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| | - Marcel Eens
- Ethology Group, Department of Biology, University of Antwerp Wilrijk, Belgium
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University Budapest, Hungary
| |
Collapse
|
15
|
Guo B, Chain FJJ, Bornberg-Bauer E, Leder EH, Merilä J. Genomic divergence between nine- and three-spined sticklebacks. BMC Genomics 2013; 14:756. [PMID: 24188282 PMCID: PMC4046692 DOI: 10.1186/1471-2164-14-756] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
Background Comparative genomics approaches help to shed light on evolutionary processes that shape differentiation between lineages. The nine-spined stickleback (Pungitius pungitius) is a closely related species of the ecological ‘supermodel’ three-spined stickleback (Gasterosteus aculeatus). It is an emerging model system for evolutionary biology research but has garnered less attention and lacks extensive genomic resources. To expand on these resources and aid the study of sticklebacks in a phylogenetic framework, we characterized nine-spined stickleback transcriptomes from brain and liver using deep sequencing. Results We obtained nearly eight thousand assembled transcripts, of which 3,091 were assigned as putative one-to-one orthologs to genes found in the three-spined stickleback. These sequences were used for evaluating overall differentiation and substitution rates between nine- and three-spined sticklebacks, and to identify genes that are putatively evolving under positive selection. The synonymous substitution rate was estimated to be 7.1 × 10-9 per site per year between the two species, and a total of 165 genes showed patterns of adaptive evolution in one or both species. A few nine-spined stickleback contigs lacked an obvious ortholog in three-spined sticklebacks but were found to match genes in other fish species, suggesting several gene losses within 13 million years since the divergence of the two stickleback species. We identified 47 SNPs in 25 different genes that differentiate pond and marine ecotypes. We also identified 468 microsatellites that could be further developed as genetic markers in nine-spined sticklebacks. Conclusion With deep sequencing of nine-spined stickleback cDNA libraries, our study provides a significant increase in the number of gene sequences and microsatellite markers for this species, and identifies a number of genes showing patterns of adaptive evolution between nine- and three-spined sticklebacks. We also report several candidate genes that might be involved in differential adaptation between marine and freshwater nine-spined sticklebacks. This study provides a valuable resource for future studies aiming to identify candidate genes underlying ecological adaptation in this and other stickleback species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-756) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baocheng Guo
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|