Polimanti R, Gelernter J. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder.
PLoS Genet 2017;
13:e1006618. [PMID:
28187187 PMCID:
PMC5328401 DOI:
10.1371/journal.pgen.1006618]
[Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/27/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
The human brain is the outcome of innumerable evolutionary processes; the systems genetics of psychiatric disorders could bear their signatures. On this basis, we analyzed five psychiatric disorders, attention deficit hyperactivity disorder, autism spectrum disorder (ASD), bipolar disorder, major depressive disorder, and schizophrenia (SCZ), using GWAS summary statistics from the Psychiatric Genomics Consortium. Machine learning-derived scores were used to investigate two natural-selection scenarios: complete selection (loci where a selected allele reached fixation) and incomplete selection (loci where a selected allele has not yet reached fixation). ASD GWAS results positively correlated with incomplete-selection (p = 3.53*10−4). Variants with ASD GWAS p<0.1 were shown to have a 19%-increased probability to be in the top-5% for incomplete-selection score (OR = 1.19, 95%CI = 1.11–1.8, p = 9.56*10−7). Investigating the effect directions of minor alleles, we observed an enrichment for positive associations in SNPs with ASD GWAS p<0.1 and top-5% incomplete-selection score (permutation p<10−4). Considering the set of these ASD-positive-associated variants, we observed gene-expression enrichments for brain and pituitary tissues (p = 2.3*10−5 and p = 3*10−5, respectively) and 53 gene ontology (GO) enrichments, such as nervous system development (GO:0007399, p = 7.57*10−12), synapse organization (GO:0050808, p = 8.29*10−7), and axon guidance (GO:0007411, p = 1.81*10−7). Previous genetic studies demonstrated that ASD positively correlates with childhood intelligence, college completion, and years of schooling. Accordingly, we hypothesize that certain ASD risk alleles were under positive selection during human evolution due to their involvement in neurogenesis and cognitive ability.
Predisposition to psychiatric disorders is due to the contribution of many genes involved in numerous molecular mechanisms. Since brain evolution has played a pivotal role in determining the success of the human species, the molecular pathways involved with the onset of mental illnesses are likely to be informative as we seek an understanding of the mechanisms involved in the evolution of human brain. Accordingly, we tested whether the genetics of psychiatric disorders is enriched for signatures of positive selection. We observed a strong finding related to the genetics of autism spectrum disorders (ASD): common risk alleles are enriched for genomic signatures of incomplete selection (loci where a selected allele has not yet reached fixation). The genes where these alleles map tend to be expressed in brain and pituitary tissues, to be involved in molecular mechanisms related to nervous system development, and surprisingly, to be associated with increased cognitive ability. Previous studies identified signatures of purifying selection in genes affected by ASD rare alleles. Accordingly, at least two different evolutionary mechanisms appear to be present in relation to ASD genetics: 1) rare disruptive alleles eliminated by purifying selection; 2) common alleles selected for their beneficial effects on cognitive skills. This scenario would explain ASD prevalence, which is higher than that expected for a trait under purifying selection, as the evolutionary cost of polygenic adaptation related to cognitive ability.
Collapse