1
|
Lo Piccolo L, Yeewa R, Pohsa S, Yamsri T, Calovi D, Phetcharaburanin J, Suksawat M, Kulthawatsiri T, Shotelersuk V, Jantrapirom S. FAME4-associating YEATS2 knockdown impairs dopaminergic synaptic integrity and leads to seizure-like behaviours in Drosophila melanogaster. Prog Neurobiol 2024; 233:102558. [PMID: 38128822 DOI: 10.1016/j.pneurobio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a neurological disorder caused by a TTTTA/TTTCA intronic repeat expansion. FAME4 is one of the six types of FAME that results from the repeat expansion in the first intron of the gene YEATS2. Although the RNA toxicity is believed to be the primary mechanism underlying FAME, the role of genes where repeat expansions reside is still unclear, particularly in the case of YEATS2 in neurons. This study used Drosophila to explore the effects of reducing YEATS2 expression. Two pan-neuronally driven dsDNA were used for knockdown of Drosophila YEATS2 (dYEATS2), and the resulting molecular and behavioural outcomes were evaluated. Drosophila with reduced dYEATS2 expression exhibited decreased tolerance to acute stress, disturbed locomotion, abnormal social behaviour, and decreased motivated activity. Additionally, reducing dYEATS2 expression negatively affected tyrosine hydroxylase (TH) gene expression, resulting in decreased dopamine biosynthesis. Remarkably, seizure-like behaviours induced by knocking down dYEATS2 were rescued by the administration of L-DOPA. This study reveals a novel role of YEATS2 in neurons in regulating acute stress responses, locomotion, and complex behaviours, and suggests that haploinsufficiency of YEATS2 may play a role in FAME4.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Daniel Calovi
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Jutarop Phetcharaburanin
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Mi K, Li Y, Yang Y, Secombe J, Liu X. DVT: a high-throughput analysis pipeline for locomotion and social behavior in adult Drosophila melanogaster. Cell Biosci 2023; 13:187. [PMID: 37798731 PMCID: PMC10557313 DOI: 10.1186/s13578-023-01125-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Drosophila melanogaster is excellent animal model for understanding the molecular basis of human neurological and motor disorders. The experimental conditions and chamber design varied between studies. Moreover, most previously established paradigms focus on fly trace detection algorithm development. A comprehensive understanding on how fly behaves in the chamber is still lacking. RESULTS In this report, we established 74 unique behavior metrics quantifying spatiotemporal characteristics of adult fly locomotion and social behaviors, of which 49 were newly proposed. By the aiding of the developed analysis pipeline, Drosophila video tracking (DVT), we identified siginificantly different patterns of fly behavior confronted with different chamber height, fly density, illumination and experimental time. Meanwhile, three fly strains which are widely used as control lines, Canton-S(CS), w1118 and Oregon-R (OR), were found to exhibit distinct motion explosiveness and exercise endurance. CONCLUSIONS We believe the proposed behavior metrics set and pipeline should help identify subtle spatial and temporal differences of drosophila behavior confronted with different environmental factors or gene variants.
Collapse
Affiliation(s)
- Kai Mi
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yiqing Li
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuhang Yang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
3
|
El Kholy S, Al Naggar Y. Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27936-27947. [PMID: 36394804 DOI: 10.1007/s11356-022-24034-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
While there is substantial literature on potential risks associated with exposure to emerging nanomaterials, less is known about the potential effects of hazardous metallic nanoparticles on vision, as well as the mechanisms that underpin them. The fruit fly (Drosophila melanogaster) was used as an in vivo model organism to investigate the effects of exposure to a sublethal concentration (0.03 mg CdO NPs/mL, which was 20% of the LC50) on fly vision and compound eye ultrastructure. First, we observed a reduction in phototaxis response in treated flies but no change in locomotor activity. Because histamine (HA) has been linked to arthropod vision, we investigated HA synthesis, uptake, and recycling as a possible underlying mechanism for the observed adverse effect of CdO NPs on fly vision. This was accomplished by measuring the expression of the histamine decarboxylase (hdc) gene, which encodes the enzyme that converts the amino acid histidine to histamine (HA), as well as the expression of some genes involved in HA-recycling pathways (tan, ebony, Balat, CarT, and Lovit). The results showed that CdO NPs changed the expression levels of hdc, Lovit, tan, and eboney, indicating that HA synthesis, transport, and recycling were disrupted. Furthermore, less histamine immunolabeling was found in the head tissues of CdO NP-treated flies, particularly in the optic lobes. We also observed and quantified CdO NP bioaccumulation in compound eye tissues, which resulted in a number of cytological changes. Phenotypic effects (undersized eyes) have also been observed in the compound eyes of F1 flies. Considering the significance of vision in an organism's survival, the findings of this study are extremely crucial, as long-term exposure to CdO NPs may result in blindness.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Qiu S, Xiao C, Robertson RM. Knockdown of a Cyclic Nucleotide-Gated Ion Channel Impairs Locomotor Activity and Recovery From Hypoxia in Adult Drosophila melanogaster. Front Physiol 2022; 13:852919. [PMID: 35530504 PMCID: PMC9075734 DOI: 10.3389/fphys.2022.852919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP) modulates the speed of recovery from anoxia in adult Drosophila and mediates hypoxia-related behaviors in larvae. Cyclic nucleotide-gated channels (CNG) and cGMP-activated protein kinase (PKG) are two cGMP downstream targets. PKG is involved in behavioral tolerance to hypoxia and anoxia in adults, however little is known about a role for CNG channels. We used a CNGL (CNG-like) mutant with reduced CNGL transcripts to investigate the contribution of CNGL to the hypoxia response. CNGL mutants had reduced locomotor activity under normoxia. A shorter distance travelled in a standard locomotor assay was due to a slower walking speed and more frequent stops. In control flies, hypoxia immediately reduced path length per minute. Flies took 30–40 min in normoxia for >90% recovery of path length per minute from 15 min hypoxia. CNGL mutants had impaired recovery from hypoxia; 40 min for ∼10% recovery of walking speed. The effects of CNGL mutation on locomotor activity and recovery from hypoxia were recapitulated by pan-neuronal CNGL knockdown. Genetic manipulation to increase cGMP in the CNGL mutants increased locomotor activity under normoxia and eliminated the impairment of recovery from hypoxia. We conclude that CNGL channels and cGMP signaling are involved in the control of locomotor activity and the hypoxic response of adult Drosophila.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
5
|
El Kholy S, Giesy JP, Al Naggar Y. Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster). JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124671. [PMID: 33349477 DOI: 10.1016/j.jhazmat.2020.124671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticles of cadmium oxide (CdO NPs) are among the most common industrial metal oxide nanoparticles. Early adulthood (P1) fruit flies (D. melanogaster) were exposed for 7 days to a sub lethal concentration (0.03 mg CdO NPs/mL, which was 20% of the LC50), spiked into food media to test whether short episodes of CdO NPs exposures early in adult life have long-lasting effects on life history traits such as fecundity well beyond exposure times. All studied life history traits, as well as climbing behavior were adversely affected by exposure to CdO NPs. A blistered wing phenotype was also observed in the non-exposed progeny (F1) of adult flies (P1) and their fecundity was significantly decreased (-50%) compared to the fecundity of non-exposed (control) F1 flies. Expressions of antioxidant enzymes encoding genes; catalase and superoxide dismutase (SOD2) were significantly up regulated in P1 flies compared to control. Expression of metallothionein encoding genes (MTn A-D) were significantly up-regulated in both parent flies (P1) and their progeny (F1) after exposure of P1 flies to CdO NPs compared to non-exposed control flies, suggesting long-term potential effects. Taken together, these findings indicate that short-term exposure to a sub-lethal CdO NP concentration is sufficient to have long-lasting, adverse effects on fruit flies.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| |
Collapse
|
6
|
Qiu S, Li C, Cao G, Xiao C. Mating experience modifies locomotor performance and promotes episodic motor activity in Drosophila melanogaster. ZOOLOGY 2020; 144:125854. [PMID: 33186862 DOI: 10.1016/j.zool.2020.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022]
Abstract
Sexual behavior is a routine among animal species. Sexual experience has several behavioral consequences in insects, but its physiological basis is less well-understood. The episodic motor activity with a periodicity around 19 s was unintentionally observed in the wildtype Canton-S flies and was greatly reduced in the white-eyed mutant w1118 flies. Episodic motor activity co-exists with several consistent locomotor performances in Canton-S flies whereas reduced episodic motor activity is accompanied by neural or behavioral abnormalities in w1118 flies. The improvements of both episodic motor activity and locomotor performance are co-inducible by a pulsed light illumination in w1118. Here we show that mating experience of w1118 males promoted fast and consistent locomotor activities and increased the power of episodic motor activities. Compared with virgin males, mated ones showed significant increases of boundary preference, travel distance over 60 s, and increased path increments per 0.2 s. In contrast, mated males of Canton-S showed decreased boundary preference, increased travel distance over 60 s, and increased path increments per 0.2 s. Additionally, mated males of w1118 displayed increased power amplitude of periodic motor activities at 0.03-0.1 Hz. These data indicated that mating experience promoted fast and consistent locomotion and improved episodic motor activities in w1118 male flies.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, Jiangsu, China.
| | - Chenxi Li
- College of Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, China
| | - Guihua Cao
- Jiangsu Tianyu Environmental Protection Group Co., Ltd, Taishan East 328, Yangzhou, 225200, Jiangsu, China
| | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
7
|
Individual, but not population asymmetries, are modulated by social environment and genotype in Drosophila melanogaster. Sci Rep 2020; 10:4480. [PMID: 32161330 PMCID: PMC7066193 DOI: 10.1038/s41598-020-61410-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Theory predicts that social interactions can induce an alignment of behavioral asymmetries between individuals (i.e., population-level lateralization), but evidence for this effect is mixed. To understand how interaction with other individuals affects behavioral asymmetries, we systematically manipulated the social environment of Drosophila melanogaster, testing individual flies and dyads (female-male, female-female and male-male pairs). In these social contexts we measured individual and population asymmetries in individual behaviors (circling asymmetry, wing use) and dyadic behaviors (relative position and orientation between two flies) in five different genotypes. We reasoned that if coordination between individuals drives alignment of behavioral asymmetries, greater alignment at the population-level should be observed in social contexts compared to solitary individuals. We observed that the presence of other individuals influenced the behavior and position of flies but had unexpected effects on individual and population asymmetries: individual-level asymmetries were strong and modulated by the social context but population-level asymmetries were mild or absent. Moreover, the strength of individual-level asymmetries differed between strains, but this was not the case for population-level asymmetries. These findings suggest that the degree of social interaction found in Drosophila is insufficient to drive population-level behavioral asymmetries.
Collapse
|