1
|
Ben-Avraham D, Govindaraju DR, Budagov T, Fradin D, Durda P, Liu B, Ott S, Gutman D, Sharvit L, Kaplan R, Bougnères P, Reiner A, Shuldiner AR, Cohen P, Barzilai N, Atzmon G. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. SCIENCE ADVANCES 2017; 3:e1602025. [PMID: 28630896 PMCID: PMC5473676 DOI: 10.1126/sciadv.1602025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/26/2017] [Indexed: 05/26/2023]
Abstract
Although both growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signaling were shown to regulate life span in lower organisms, the role of GH signaling in human longevity remains unclear. Because a GH receptor exon 3 deletion (d3-GHR) appears to modulate GH sensitivity in humans, we hypothesized that this polymorphism could play a role in human longevity. We report a linear increased prevalence of d3-GHR homozygosity with age in four independent cohorts of long-lived individuals: 841 participants [567 of the Longevity Genes Project (LGP) (8% increase; P = 0.01), 152 of the Old Order Amish (16% increase; P = 0.02), 61 of the Cardiovascular Health Study (14.2% increase; P = 0.14), and 61 of the French Long-Lived Study (23.5% increase; P = 0.02)]. In addition, mega analysis of males in all cohorts resulted in a significant positive trend with age (26% increase; P = 0.007), suggesting sexual dimorphism for GH action in longevity. Further, on average, LGP d3/d3 homozygotes were 1 inch taller than the wild-type (WT) allele carriers (P = 0.05) and also showed lower serum IGF-1 levels (P = 0.003). Multivariate regression analysis indicated that the presence of d3/d3 genotype adds approximately 10 years to life span. The LGP d3/d3-GHR transformed lymphocytes exhibited superior growth and extracellular signal-regulated kinase activation, to GH treatment relative to WT GHR lymphocytes (P < 0.01), indicating a GH dose response. The d3-GHR variant is a common genetic polymorphism that modulates GH responsiveness throughout the life span and positively affects male longevity.
Collapse
Affiliation(s)
- Danny Ben-Avraham
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Diddahally R. Govindaraju
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Temuri Budagov
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Delphine Fradin
- INSERM U986, Pincus Building, Bicêtre Hospital, Paris Sud University, 94275 Le Kremlin Bicêtre, France
| | - Peter Durda
- Department of Pathology University of Vermont, 208 South Park Drive, Colchester, VT 05446, USA
| | - Bing Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandy Ott
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pierre Bougnères
- INSERM U986, Pincus Building, Bicêtre Hospital, Paris Sud University, 94275 Le Kremlin Bicêtre, France
- INSERM U1169 and Department of Pediatric Endocrinology and Diabetes, Bicêtre Hospital, Pôle I3E, Paris Sud University, 94275 Le Kremlin Bicêtre, France
| | - Alex Reiner
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alan R. Shuldiner
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Geriatrics Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD 20420, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
3
|
Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev 2015; 23:75-89. [PMID: 25555680 DOI: 10.1016/j.arr.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here, we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control.
Collapse
|
4
|
Abstract
Longevity as a complex life-history trait shares an ontogenetic relationship with other quantitative traits and varies among individuals, families and populations. Heritability estimates of longevity suggest that about a third of the phenotypic variation associated with the trait is attributable to genetic factors, and the rest is influenced by epigenetic and environmental factors. Individuals react differently to the environments that they are a part of, as well as to the environments they construct for their survival and reproduction; the latter phenomenon is known as niche construction. Lifestyle influences longevity at all the stages of development and levels of human diversity. Hence, lifestyle may be viewed as a component of niche construction. Here, we: a) interpret longevity using a combination of genotype-epigenetic-phenotype (GEP) map approach and niche-construction theory, and b) discuss the plausible influence of genetic and epigenetic factors in the distribution and maintenance of longevity among individuals with normal life span on the one hand, and centenarians on the other. Although similar genetic and environmental factors appear to be common to both of these groups, exceptional longevity may be influenced by polymorphisms in specific genes, coupled with superior genomic stability and homeostatic mechanisms, maintained by negative frequency-dependent selection. We suggest that a comparative analysis of longevity between individuals with normal life span and centenarians, along with insights from population ecology and evolutionary biology, would not only advance our knowledge of biological mechanisms underlying human longevity, but also provide deeper insights into extending healthy life span.
Collapse
Affiliation(s)
- Diddahally Govindaraju
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
| | - Gil Atzmon
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
| |
Collapse
|
5
|
Evolutionary genetic bases of longevity and senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 847:1-44. [PMID: 25916584 DOI: 10.1007/978-1-4939-2404-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Senescence, as a time-dependent developmental process, affects all organisms at every stage in their development and growth. During this process, genetic, epigenetic and environmental factors are known to introduce a wide range of variation for longevity among individuals. As an important life-history trait, longevity shows ontogenetic relationships with other complex traits, and hence may be viewed as a composite trait. Factors that influence the origin and maintenance of diversity of life are ultimately governed by Darwinian processes. Here we review evolutionary genetic mechanisms underlying longevity and senescence in humans from a life-history and genotype-epigenetic-phenotype (G-E-P) map prospective. We suggest that synergistic and cascading effects of cis-ruptive mechanisms in the genome, and epigenetic disruptive processes in relation to environmental factors may lead to sequential slippage in the G-E-P space. These mechanisms accompany age, stage and individual specific senescent processes, influenced by positive pleiotropy of certain genes, superior genome integrity, negative-frequency dependent selection and other factors that universally regulate rarity in nature. Finally we interpret life span as an inherent property of self-organizing systems that, accordingly, maintain species-specific limits for the entire complex of fitness traits. We conclude that Darwinian approaches provide unique opportunities to discover the biological bases of longevity as well as devise individual specific medical or other interventions toward improving health span.
Collapse
|
6
|
Milne FH, Judge DS, Preen DB, Weinstein P. Early life environment, life history and risk of endometrial cancer. Med Hypotheses 2011; 77:626-32. [PMID: 21831531 DOI: 10.1016/j.mehy.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/01/2011] [Indexed: 01/31/2023]
Affiliation(s)
- Fritha H Milne
- School of Anatomy & Human Biology, The University of Western Australia, Perth, Australia.
| | | | | | | |
Collapse
|
7
|
Nunn AV, Guy GW, Brodie JS, Bell JD. Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle. Nutr Metab (Lond) 2010; 7:87. [PMID: 21143891 PMCID: PMC3009972 DOI: 10.1186/1743-7075-7-87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023] Open
Abstract
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments.
Collapse
Affiliation(s)
- Alistair V Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 OHS, UK
| | - Geoffrey W Guy
- GW pharmaceuticals, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - James S Brodie
- GW pharmaceuticals, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 OHS, UK
| |
Collapse
|
8
|
Nunn AVW, Guy GW, Bell JD. Endocannabinoids, FOXO and the metabolic syndrome: redox, function and tipping point--the view from two systems. Immunobiology 2010; 215:617-28. [PMID: 19457573 DOI: 10.1016/j.imbio.2009.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets--ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOXO has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOXO may interact at many points; one of which may be via intracellular redox signalling. As cannabinoids have been shown to modulate reactive oxygen species production, it is possible that they can upregulate anti-oxidant defences. This suggests they may have an 'endohormetic' signalling function. The tipping point into the metabolic syndrome may be the result of a chronic lack of hormetic stimuli (in particular, physical activity), and thus, stimulus for PGC-1, with a resultant reduction in mitochondrial function and a reduced lipid capacitance. This, in the context of a positive calorie environment, will result in increased visceral adipose tissue volume, abnormal ectopic fat content and systemic inflammation. This would worsen the inflammatory-driven pathological insulin resistance and inability to deal with lipids. The resultant oxidative stress may therefore drive a compensatory anti-oxidative response epitomised by the ECS and FOXO. Thus, although blocking the ECS (e.g. via rimonabant) may induce temporary weight loss, it may compromise long-term stress resistance. Clues about how to modulate the system more safely are emerging from observations that some polyphenols, such as resveratrol and possibly, some phytocannabinoids, can modulate mitochondrial function and might improve resistance to a modern lifestyle.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College, Du Cane Road, London W12OHS, UK.
| | | | | |
Collapse
|
9
|
Laurent GS, Hammell N, McCaffrey TA. A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 2010; 131:299-305. [PMID: 20346965 PMCID: PMC2875337 DOI: 10.1016/j.mad.2010.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 12/15/2022]
Abstract
Advancing age remains the largest risk factor for devastating diseases, such as heart disease, stroke, and cancer. The mechanisms by which advancing age predisposes to disease are now beginning to unfold, due in part, to genetic and environmental manipulations of longevity in lower organisms. Converging lines of evidence suggest that DNA damage may be a final common pathway linking several proposed mechanisms of aging. The present review forwards a theory for an additional aging pathway that involves modes of inherent genetic instability. Long interspersed nuclear elements (LINEs) are endogenous non-LTR retrotransposons that compose about 20% of the human genome. The LINE-1 (L1) gene products, ORF1p and ORF2p, possess mRNA binding, endonuclease, and reverse transcriptase activity that enable retrotransposition. While principally active only during embryogenesis, L1 transcripts are detected in adult somatic cells under certain conditions. The present hypothesis proposes that L1s act as an 'endogenous clock', slowly eroding genomic integrity by competing with the organism's double-strand break repair mechanism. Thus, while L1s are an accepted mechanism of genetic variation fueling evolution, it is proposed that longevity is negatively impacted by somatic L1 activity. The theory predicts testable hypotheses about the relationship between L1 activity, DNA repair, healthy aging, and longevity.
Collapse
Affiliation(s)
- Georges St. Laurent
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, DC 20037
- Immunovirology – Biogenisis Group, University of Antioquia, A.A. 1226, Medellin, Colombia And Brown University, Department of Biology, Providence, RI 02912
| | - Neil Hammell
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, DC 20037
| | - Timothy A. McCaffrey
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, DC 20037
| |
Collapse
|
10
|
Nunn AVW, Bell JD, Guy GW. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe? Nutr Metab (Lond) 2009; 6:16. [PMID: 19371409 PMCID: PMC2678135 DOI: 10.1186/1743-7075-6-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 04/16/2009] [Indexed: 12/16/2022] Open
Abstract
The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment.
Collapse
Affiliation(s)
- Alistair VW Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 OHS, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 OHS, UK
| | | |
Collapse
|
11
|
Ottaviani E, Malagoli D, Capri M, Franceschi C. Ecoimmunology: is there any room for the neuroendocrine system? Bioessays 2008; 30:868-74. [DOI: 10.1002/bies.20801] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Mangel M. Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Tavernarakis N. Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 2008; 18:228-35. [DOI: 10.1016/j.tcb.2008.02.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 01/21/2023]
|