1
|
Sultan Khan M, Jagota A. Changing dynamics in daily rhythms of oxidative stress indicators in SCN and extra-SCN brain regions with aging in male Wistar rats. Biogerontology 2024; 26:9. [PMID: 39546089 DOI: 10.1007/s10522-024-10150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
The suprachiasmatic nucleus (SCN) in the hypothalamus regulates circadian timing system (CTS) by co-ordinating peripheral tissue clocks and extra-SCN oscillators in the brain. Aging disrupts the CTS, impairing physiological functions and reducing antioxidant defences, which contribute to neurodegeneration. The brain is vulnerable to oxidative damage due to its high metabolic activity, oxygen consumption, and levels of iron and lipids. Antioxidant enzymes, such as catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), and lipid peroxidation (LPO), help against oxidative damage. In this study, we examined the temporal patterns of these antioxidant stress indicators in the SCN and extra-SCN brain regions (frontal cortex, cerebellum, and hippocampus) at various time points in male Wistar rats 3, 12, and 24 months. The rhythmicity of GST and LPO levels persisted across brain regions with aging, while CAT rhythmicity was lost in the SCN and hippocampus of older rats. SOD rhythmicity persisted in cortex, cerebellum, and hippocampus but was lost in the SCN. The daily rhythm parameters of CAT were affected most significantly, followed by SOD, GST, and LPO. Our findings demonstrate that aging leads to desynchronization of oxidative stress indicators potentially contributing to neurodegeneration and circadian dysfunction with varying effects across different brain tissues.
Collapse
Affiliation(s)
- M Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
2
|
Day time-restricted feeding shows differential synchronizing effects on age-related changes of serotonin metabolism in SCN and the pineal gland in male Wistar rats. Biogerontology 2022; 23:771-788. [PMID: 36322233 DOI: 10.1007/s10522-022-09994-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The circadian timing system is synchronized by the environmental photic and non-photic signals. Light is the major cue that entrains the master circadian oscillator located in suprachiasmatic nucleus (SCN). With aging condition ocular light impairs because of the age-related deficiencies in the eye as a result the clock becomes less sensitive to light. In such case non-photic cues may play a major role in synchronizing the clock. Earlier studies have linked altered meal timings to induce many physiological changes including serotonin in different brain regions such as hypothalamus, brain stem and striatum. Much is not known about the effect of timed food restriction as a non-photic stimulus on serotonergic system in SCN under aging condition. We report here the synchronizing effects of time-restricted feeding (TRF) as a non-photic stimulus on serotonin and its related metabolites in the SCN and pineal gland of male Wistar rats upon aging. Under food restriction daily rhythmicity of serotonin 5-HT and 5-HTOH was abolished whereas NAS, 5-MIAA and NAT showed a significant decrease in their daily pulses upon food restriction in 3 months (m) old rats. Under forced day time feeding schedule the mean 24 h levels of serotonin have significantly decreased in 12 and 24 m old animals in SCN and pineal gland. Most of the serotonin metabolites in the SCN and pineal gland of 12 and 24 m old ad libitum fed group rats have shown rhythmicity. 5-HT, NAS, MEL and NAT have shown daily rhythm in the SCN of 12 and 24 m old rats whereas 5-MIAA and 5-MTOH did not show daily rhythm in both the age groups. The mean 24 h levels of 5-HTP, 5-HIAA, 5-MIAA, 5-MTOH, MEL and NAT were increased in the pineal gland of 12 and 24 months old rats. This work help demonstrate the role of TRF in synchronising age induced desynchronization in serotonin metabolome.
Collapse
|
3
|
Guedes Linhares SS, da Silva Rodrigues Meurer Y, Aquino A, Aquino Câmara D, Mateus Brandão LE, Dierschnabel AL, Porto Fiuza F, Hypólito Lima R, Engelberth RC, Cavalcante JS. Effects of prenatal exposure to fluoxetine on circadian rhythmicity in the locomotor activity and neuropeptide Y and 5-HT expression in male and female adult Wistar rats. Int J Dev Neurosci 2022; 82:407-422. [PMID: 35481929 DOI: 10.1002/jdn.10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation, and organization of neural circuitries related to emotional, cognitive, and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalization. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over four weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, and as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL, and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.
Collapse
Affiliation(s)
- Sara Sophia Guedes Linhares
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Antonio Aquino
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Aquino Câmara
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Aline Lima Dierschnabel
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Ramon Hypólito Lima
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
4
|
Fiuza FP, Queiroz JPG, Aquino ACQ, Câmara DA, Brandão LEM, Lima RH, Cavalcanti JRLP, Engelberth RCGJ, Cavalcante JS. Aging Alters Daily and Regional Calretinin Neuronal Expression in the Rat Non-image Forming Visual Thalamus. Front Aging Neurosci 2021; 13:613305. [PMID: 33716710 PMCID: PMC7943479 DOI: 10.3389/fnagi.2021.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Aging affects the overall physiology, including the image-forming and non-image forming visual systems. Among the components of the latter, the thalamic retinorecipient inter-geniculate leaflet (IGL) and ventral lateral geniculate (vLGN) nucleus conveys light information to subcortical regions, adjusting visuomotor, and circadian functions. It is noteworthy that several visual related cells, such as neuronal subpopulations in the IGL and vLGN are neurochemically characterized by the presence of calcium binding proteins. Calretinin (CR), a representative of such proteins, denotes region-specificity in a temporal manner by variable day–night expression. In parallel, age-related brain dysfunction and neurodegeneration are associated with abnormal intracellular concentrations of calcium. Here, we investigated whether daily changes in the number of CR neurons are a feature of the aged IGL and vLGN in rats. To this end, we perfused rats, ranging from 3 to 24 months of age, within distinct phases of the day, namely zeitgeber times (ZTs). Then, we evaluated CR immunolabeling through design-based stereological cell estimation. We observed distinct daily rhythms of CR expression in the IGL and in both the retinorecipient (vLGNe) and non-retinorecipient (vLGNi) portions of the vLGN. In the ZT 6, the middle of the light phase, the CR cells are reduced with aging in the IGL and vLGNe. In the ZT 12, the transition between light to dark, an age-related CR loss was found in all nuclei. While CR expression predominates in specific spatial domains of vLGN, age-related changes appear not to be restricted at particular portions. No alterations were found in the dark/light transition or in the middle of the dark phase, ZTs 0, and 18, respectively. These results are relevant in the understanding of how aging shifts the phenotype of visual related cells at topographically organized channels of visuomotor and circadian processing.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Pablo G Queiroz
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Antônio Carlos Q Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego A Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luiz Eduardo M Brandão
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ramon H Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Rodolfo L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara G J Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
5
|
Jagota A, Mattam U. Daily chronomics of proteomic profile in aging and rotenone-induced Parkinson’s disease model in male Wistar rat and its modulation by melatonin. Biogerontology 2017; 18:615-630. [DOI: 10.1007/s10522-017-9711-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
|
6
|
Oskamp A, Wedekind F, Kroll T, Elmenhorst D, Bauer A. Neurotransmitter receptor availability in the rat brain is constant in a 24 hour-period. Chronobiol Int 2017; 34:866-875. [PMID: 28548869 DOI: 10.1080/07420528.2017.1325370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Wakefulness and sleep are fundamental characteristics of the brain. We, therefore, hypothesized that transmitter systems contribute to their regulation and will exhibit circadian alterations. We assessed the concentration of various neurotransmitter receptors and transporters including adenosinergic (A1AR, A2AAR, and ENT1), dopaminergic (D1R, D2R, and DAT), and serotonergic (5-HT2AR) target proteins. Adult male Sprague Dawley rats were used and maintained in a 12 h light: 12 h dark cycle (lights on from 07:00 h to 19:00 h). We measured receptor and transporter concentrations in different brain regions, including caudate putamen, basal forebrain, and cortex in 4 hour-intervals over a 24 hour-period using quantitative in vitro autoradiography. Investigated receptors and transporters showed no fluctuations in any of the analyzed regions using one-way ANOVA. Only in the horizontal diagonal band of Broca, the difference of A1AR concentration between light and dark phases (t-test) as well as the cosinor analysis of the 24 hour-course were significant, suggesting that this region underlies receptor fluctuations. Our findings suggest that the availability of the investigated neurotransmitter receptors and transporters does not undergo changes in a 24 hour-period. While there are reports on changes in adenosine and dopamine receptors during sleep deprivation, we found no changes in the investigated adenosine, dopamine, and serotonin receptors during regular and undisturbed day-night cycles.
Collapse
Affiliation(s)
- A Oskamp
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany
| | - F Wedekind
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany
| | - T Kroll
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany
| | - D Elmenhorst
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany.,b Psychiatry and Psychotherapy, Medical Psychology , Rheinische Friedrich-Wilhelms-University Bonn , Bonn , Germany
| | - A Bauer
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany.,c Neurological Department , Heinrich-Heine-University Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
7
|
Vinod C, Jagota A. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin. Biogerontology 2016; 17:859-871. [PMID: 27614960 DOI: 10.1007/s10522-016-9656-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
In mammals suprachiasmatic nucleus (SCN), acts as a light entrainable master clock and by generation of temporal oscillations regulates the peripheral organs acting as autonomous clocks resulting in overt behavioral and physiological rhythms. SCN also controls synthesis and release of melatonin (hormonal message for darkness) from pineal. Nitric Oxide (NO) acts as an important neurotransmitter in generating the phase shifts of circadian rhythms and participates in sleep-wake processes, maintenance of vascular tone as well as signalling and regulating inflammatory processes. Aging is associated with disruption of circadian timing system and decline in endogenous melatonin leading to several physiological disorders. Here we report the effect of aging on NO daily rhythms in various peripheral clocks such as kidney, intestine, liver, heart, lungs and testis. NO levels were measured at zeitgeber time (ZT) 0, 6, 12 and 18 in these tissues using Griess assay in male Wistar rats. Aging resulted in alteration of NO levels as well as phase of NO in both 12 and 24 months groups. Correlation analysis demonstrated loss of stoichiometric interaction between the various peripheral clocks with aging. Age induced alterations in NO daily rhythms were found to be most significant in liver and, interestingly least in lungs. Neurohormone melatonin, an endogenous synchroniser and an antiaging agent decreases with aging. We report further differential restoration with exogenous melatonin administration of age induced alterations in NO daily rhythms and mean levels in kidney, intestine and liver and the stoichiometric interactions between the various peripheral clocks.
Collapse
Affiliation(s)
- Ch Vinod
- Neurobiology and Molecular Chronobiology Lab, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Lab, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
8
|
Reddy MY, Jagota A. Melatonin has differential effects on age-induced stoichiometric changes in daily chronomics of serotonin metabolism in SCN of male Wistar rats. Biogerontology 2014; 16:285-302. [DOI: 10.1007/s10522-014-9545-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/27/2014] [Indexed: 11/28/2022]
|
9
|
Reddy VDK, Jagota A. Effect of restricted feeding on nocturnality and daily leptin rhythms in OVLT in aged male Wistar rats. Biogerontology 2014; 15:245-56. [PMID: 24619733 DOI: 10.1007/s10522-014-9494-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/28/2014] [Indexed: 01/08/2023]
Abstract
Circadian system has direct relevance to the problems of modern lifestyle, shift workers, jet lag etc. To understand non-photic regulation of biological clock, the effects of restricted feeding (RF) on locomotor activity and daily leptin immunoreactivity (ir) rhythms in three age groups [3, 12 and 24 months (m)] of male Wistar rats maintained in light:dark (LD) 12:12 h conditions were studied. Leptin-ir was examined in the suprachiasmatic nucleus (SCN), the medial preoptic area (MPOA) and organum vasculosum of the lamina terminalis (OVLT). Reversal of feeding time due to restricted food availability during daytime resulted in switching of the animals from nocturnality to diurnality with significant increase in day time activity and decrease in night time activity. The RF resulted in % diurnality of approximately 32, 29 and 73 from % nocturnality of 82, 92 and 89 in control rats of 3, 12 and 24 m age, respectively. The increase in such switching from nocturnality to diurnality with restricted feeding was found to be robust in 24 m rats. The OVLT region showed daily leptin-ir rhythms with leptin-ir maximum at ZT-0 in all the three age groups. However leptin-ir levels were minimum at ZT-12 in 3 and 12 m though at ZT-18 in 24 m. In addition the mean leptin-ir levels decreased with increase in food intake and body weight significantly in RF aged rats. Thus we report here differential effects of food entrained regulation in switching nocturnality to diurnality and daily leptin-ir rhythms in OVLT in aged rats.
Collapse
Affiliation(s)
- V D K Reddy
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Andhra Pradesh, India
| | | |
Collapse
|
10
|
Manikonda PK, Jagota A. Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Biogerontology 2012; 13:511-24. [PMID: 22960749 DOI: 10.1007/s10522-012-9396-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
Abstract
A central clock/pacemaker, suprachiasmatic nuclei of the hypothalamus coordinates and entrains circadian oscillations in the peripheral tissues such as the liver, kidney, heart, lungs etc. called peripheral clocks. These also have endogenous circadian oscillations. The circadian rhythms of antioxidants present in cytosol signify redox state of the cell during day/night cycle. The liver has a major impact on homeostasis through its control on serum protein composition and plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products and undergoes substantial changes in structure and function upon aging. In present study, the temporal patterns of oxidative stress indicators in liver were studied. Daily rhythms of lipid peroxidation end products, reduced glutathione (GSH), oxidized glutathione (GSSG) and antioxidant enzymes such as glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were studied in liver at variable time points (Zeitgeber Time (ZT) 0, 6, 12 and 18) in three age groups: 3 (adult), 12 and 24 months old male Wistar rats. There was increase in oxidative stress in 12 and 24 months old rats indicated through a significant increase in lipid peroxidation, decrease in GSH/GSSG ratio and antioxidant enzyme activities. In 3 months old rats, lipid peroxidation was maximum at ZT-12 whereas GSH, SOD and CAT activities were minimum at ZT-12. The maximum level in 24 h i.e., acrophases of lipid peroxidation, GPx, SOD and CAT activities in liver cell free extracts altered upon aging. As melatonin, messenger of darkness, an endogenous synchronizer of rhythm, an antioxidant and an antiaging drug, declines with aging we studied the effects of melatonin on activities of these antioxidant enzymes in aging rats. Melatonin administration resulted in differential restoration of acrophases, amplitude, mean as well as daily rhythms of lipid peroxidation and antioxidants in liver of 12 and 24 months old rats.
Collapse
Affiliation(s)
- Pavan Kumar Manikonda
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | |
Collapse
|
11
|
Hypothalamic Control of Sleep in Aging. Neuromolecular Med 2012; 14:139-53. [DOI: 10.1007/s12017-012-8175-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 02/10/2012] [Indexed: 12/23/2022]
|
12
|
Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:305-336. [PMID: 22877673 DOI: 10.1016/b978-0-444-59427-3.00018-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The phase of the mammalian circadian system can be entrained to a range of environmental stimuli, or zeitgebers, including food availability and light. Further, locomotor activity can act as an entraining signal and represents a mechanism for an endogenous behavior to feedback and influence subsequent circadian function. This process involves a number of nuclei distributed across the brain stem, thalamus, and hypothalamus and ultimately alters SCN electrical and molecular function to induce phase shifts in the master circadian pacemaker. Locomotor activity feedback to the circadian system is effective across both nocturnal and diurnal species, including humans, and has recently been shown to improve circadian function in a mouse model with a weakened circadian system. This raises the possibility that exercise may be useful as a noninvasive treatment in cases of human circadian dysfunction including aging, shift work, transmeridian travel, and the blind.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Involvement of oxidative stress in age-related bone loss. J Surg Res 2011; 169:e37-42. [PMID: 21529826 DOI: 10.1016/j.jss.2011.02.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/06/2011] [Accepted: 02/17/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Age-related bone loss is a primary factor in osteoporosis and osteoporotic fractures in the elderly. Although oxidative stress was reported to play an important role in aging and postmenopausal bone loss, data on relating oxidative stress to age-related bone loss were scanty. This study aimed to investigate whether oxidative stress is involved in age-related bone loss. MATERIALS AND METHODS Young, adult, and old male Wistar rats were used in this study. Each group consisted of 26 animals. Oxidative stress parameters, such as advanced oxidation protein products (AOPP), malondialdehyde (MDA), and superoxide dismutase (SOD), were measured in the plasma and right femur homogenates. Bone mineral density (BMD) of left femurs and histomorphometry of tibias were investigated. RESULTS In the plasma and femurs, the levels of AOPP and MDA were increased and the SOD activity was decreased with aging. Femur BMD decreased significantly in old rats. Bone histomorphometry indicated decreases in cancellous bone volume, trabecular thickness, percent labeled perimeter, mineral apposition rate, and bone formation rate with aging. The AOPP levels in plasma and femur, and MDA levels in the plasma were negatively correlated with the femur BMD. The SOD activity in plasma and femur was positively correlated with the femur BMD. CONCLUSIONS Increase of oxidative stress and bone loss appear with aging. Oxidative stress is involved in age-related bone loss and might play an important role in the pathology of age-related bone loss.
Collapse
|
14
|
Giang T, Ritze Y, Rauchfuss S, Ogueta M, Scholz H. The serotonin transporter expression in Drosophila melanogaster. J Neurogenet 2011; 25:17-26. [PMID: 21314480 DOI: 10.3109/01677063.2011.553002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotonin transporter is an important regulator of serotonergic signaling. In order to analyze where the Drosophila melanogaster ortholog of the mammalian serotonin transporter (dSERT) is expressed in the nervous system, a dSERT antibody serum was used. Ectopic expression studies and loss of function analysis revealed that the dSERT antibody serum specifically recognizes dSERT. It was shown that in the embryonic nervous system dSERT is expressed in a subset of Engrailed-positive neurons. In the larval brain, dSERT is exclusively expressed in serotonergic neurons, all of which express dSERT. dSERT-positive neurons surround almost all brain neuropiles. In the mushroom body of the adult brain, extrinsic serotonergic neurons expressing dSERT engulf the mushroom body lobes. These neurons show regional differences in dSERT and serotonin expression. At the presynaptic terminals, serotonin release is sterically linked to serotonin reuptake. In contrast to this, there are other areas in serotonergic neurons where dSERT expression and/or function are uncoupled from synaptic neurotransmitter recycling and serotonin release. The localization pattern of dSERT can be employed to further understanding and analysis of serotonergic networks.
Collapse
Affiliation(s)
- Thomas Giang
- Department of Animal Physiology, University of Cologne, Köln, Germany
| | | | | | | | | |
Collapse
|
15
|
Bhanja S, Mohanakumar KP. Early‐life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. Int J Dev Neurosci 2010; 28:317-24. [DOI: 10.1016/j.ijdevneu.2010.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 11/10/2009] [Accepted: 02/18/2010] [Indexed: 11/25/2022] Open
Affiliation(s)
- Shravani Bhanja
- Division of Cell Biology & PhysiologyIndian Institute of Chemical Biology (CSIR)4, Raja S.C. Mullick RoadKolkata700 032West BengalIndia
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology & PhysiologyIndian Institute of Chemical Biology (CSIR)4, Raja S.C. Mullick RoadKolkata700 032West BengalIndia
| |
Collapse
|
16
|
Bartoszewicz R, Barbacka-Surowiak G. Phase response curve of mouse locomotor activity rhythm under constant light after 8-OH-DPAT and dark pulses. BIOL RHYTHM RES 2010. [DOI: 10.1080/09291010903557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Renata Bartoszewicz
- a Department of Neurophysiology and Chronobiology , Institute of Zoology, Jagiellonian University , Krakow
| | - Grażyna Barbacka-Surowiak
- a Department of Neurophysiology and Chronobiology , Institute of Zoology, Jagiellonian University , Krakow
| |
Collapse
|
17
|
Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Biogerontology 2009; 11:299-308. [PMID: 19774481 DOI: 10.1007/s10522-009-9248-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 09/10/2009] [Indexed: 01/08/2023]
Abstract
The decline in physiological functions with aging may affect the ability of the SCN, the biological clock, circadian pacemaker to transmit rhythmic information to other neural target sites, and thereby modify the expression of biological rhythms resulting in circadian disorders. Neurotransmitter serotonin plays important role in the photic and non-photic regulation of circadian rhythms and is a precursor of neurohormone melatonin, an internal zeitgeber. To assess effects of aging on the functional integrity of circadian system, we studied daily serotonin rhythms in the SCN by measuring serotonin levels at variable time points in wide range of age groups such as 15 days, 1, 2, 3 (adult), 4, 6, 9, 12, 18 and 24 months old male wistar rats. Animals were maintained in light-dark conditions (LD; 12:12) two weeks prior to experiment. We report here that in 15 days, 1 and 2 months old rat SCN the mean serotonin level is low and daily serotonin rhythm is just beginning; at 3, 4 and 6 months, serotonin levels and rhythms are robust and at 9, 12, 18 and 24 months mean serotonin levels are low again and rhythm is becoming more disrupted. Previous studies have shown the 5-HT rhythmicity was established by 3 month in rat brain but disintegrated by 6 months of age. As melatonin, an endogenous synchronizer and an antiaging agent, declines with aging, the effects of exogenous melatonin administration on serotonin rhythmicity in SCN in 3, 6, 9 and 24 months old rats were studied to assess effects of aging on responsiveness to melatonin. Our studies indicated an age related loss of sensitivity to melatonin in the restoration of age induced changes in SCN serotonin amplitude and rhythmicity.
Collapse
|