1
|
Cheng L, Pei J, Chen X, Shi F, Bao Z, Hou Q, Zhi L, Zong S, Tao J. Cold tolerance and metabolism of red-haired pine bark beetle Hylurgus ligniperda (Coleoptera: Curculionidae) during the overwintering period. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1553-1563. [PMID: 38956822 DOI: 10.1093/jee/toae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Hylurgus ligniperda invaded Shandong, China, through imported forest timber, posing a threat to China's forest health. Exotic insects with broad environmental tolerance, including low temperatures, may have a better chance of surviving the winters and becoming invasive. Understanding the cold-tolerance strategies of H. ligniperda may help to design sustainable pest management approaches. In this study, we aim to investigate the cold-tolerance ability and relevant physiological indicators in overwintering H. ligniperda adults to determine any possible overwintering strategies. Supercooling points (SCPs) for adults H. ligniperda differed significantly across months and reached the lowest level in the mid- and post-overwintering period, the minimum SCPs -6.45 ± 0.18 °C. As the cold exposure temperature decreased, the survival rate of adults gradually decreased, and no adult survived more than 1 day at -15 °C, and the LLT50 for 1 day was -7.1 °C. Since H. ligniperda adults can survive internal ice formation, they are freeze-tolerant insects. Throughout the overwintering period, the SCPs and the water, protein, sorbitol, and glycerol content in adults decreased initially and then increased. We reported significant correlations between total protein, sorbitol, trehalose, and glycerol content in the beetles and SCPs. Glycogen, lipid, protein, trehalose, and sorbitol content in adult beetles may directly affect their cold-tolerance capacity and survival during winter. This study provides a physiological and biochemical basis for further study of metabolism and cold-tolerance strategies in H. ligniperda adults, which may help predict population dynamics and distribution potential of pests.
Collapse
Affiliation(s)
- Ling Cheng
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Jiahe Pei
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Xuesong Chen
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Zhashenjiacan Bao
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Qidi Hou
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Lingxu Zhi
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Verčimáková K, Karbowniczek J, Sedlář M, Stachewicz U, Vojtová L. The role of glycerol in manufacturing freeze-dried chitosan and cellulose foams for mechanically stable scaffolds in skin tissue engineering. Int J Biol Macromol 2024; 275:133602. [PMID: 38964681 DOI: 10.1016/j.ijbiomac.2024.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Various strategies have extensively explored enhancing the physical and biological properties of chitosan and cellulose scaffolds for skin tissue engineering. This study presents a straightforward method involving the addition of glycerol into highly porous structures of two polysaccharide complexes: chitosan/carboxymethyl cellulose (Chit/CMC) and chitosan/oxidized cellulose (Chit/OC); during a one-step freeze-drying process. Adding glycerol, especially to Chit/CMC, significantly increased stability, prevented degradation, and improved mechanical strength by nearly 50%. Importantly, after 21 days of incubation in enzymatic medium Chit/CMC scaffold has almost completely decomposed, while foams reinforced with glycerol exhibited only 40% mass loss. It is possible due to differences in multivalent cations and polymer chain contraction, resulting in varied hydrogen bonding and, consequently, distinct physicochemical outcomes. Additionally, the scaffolds with glycerol improved the cellular activities resulting in over 40% higher proliferation of fibroblast after 21 days of incubation. It was achieved by imparting water resistance to the highly absorbent material and aiding in achieving a balance between hydrophilic and hydrophobic properties. This study clearly indicates the possible elimination of additional crosslinkers and multiple fabrication steps that can reduce the cost of scaffold production for skin tissue engineering applications while tailoring mechanical strength and degradation.
Collapse
Affiliation(s)
- Katarína Verčimáková
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Joanna Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
| | - Marian Sedlář
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
| | - Lucy Vojtová
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Dan X, Yang B, McDevitt RA, Gray S, Chu X, Claybourne Q, Figueroa DM, Zhang Y, Croteau DL, Bohr VA. Loss of smelling is an early marker of aging and is associated with inflammation and DNA damage in C57BL/6J mice. Aging Cell 2023; 22:e13793. [PMID: 36846960 PMCID: PMC10086518 DOI: 10.1111/acel.13793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023] Open
Abstract
Olfactory dysfunction is a prevalent symptom and an early marker of age-related neurodegenerative diseases in humans, including Alzheimer's and Parkinson's Diseases. However, as olfactory dysfunction is also a common symptom of normal aging, it is important to identify associated behavioral and mechanistic changes that underlie olfactory dysfunction in nonpathological aging. In the present study, we systematically investigated age-related behavioral changes in four specific domains of olfaction and the molecular basis in C57BL/6J mice. Our results showed that selective loss of odor discrimination was the earliest smelling behavioral change with aging, followed by a decline in odor sensitivity and detection while odor habituation remained in old mice. Compared to behavioral changes related with cognitive and motor functions, smelling loss was among the earliest biomarkers of aging. During aging, metabolites related with oxidative stress, osmolytes, and infection became dysregulated in the olfactory bulb, and G protein coupled receptor-related signaling was significantly down regulated in olfactory bulbs of aged mice. Poly ADP-ribosylation levels, protein expression of DNA damage markers, and inflammation increased significantly in the olfactory bulb of older mice. Lower NAD+ levels were also detected. Supplementation of NAD+ through NR in water improved longevity and partially enhanced olfaction in aged mice. Our studies provide mechanistic and biological insights into the olfaction decline during aging and highlight the role of NAD+ for preserving smelling function and general health.
Collapse
Affiliation(s)
- Xiuli Dan
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA
| | - Beimeng Yang
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Samuel Gray
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA
| | - Quia Claybourne
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - David M Figueroa
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA.,Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, NIH, Maryland, Baltimore, USA.,Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Peinado-Ruiz IC, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Relationship between heat shock proteins and cellular resistance to drugs and ageing. Exp Gerontol 2022; 167:111896. [PMID: 35870754 DOI: 10.1016/j.exger.2022.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Ageing is a multifactorial degenerative process which causes a decrease in the cellular capacity for repair and adaptation to external stressors. In this way, it is important to maintain the proper balance of the proteome. Heat shock proteins (HSP) will intervene in this balance, which are responsible for the correct assembly, folding and translocation of other proteins when cells are subjected to stressors. This type of protein is overexpressed in human tumor cells, while its deficit, both in function and quantity, contributes to ageing processes. The present work aims to analyze the response of cells from studies carried out in normal and tumor cells that are subjected to stressors. METHODS AND RESULTS A PubMed search was performed using the keywords "cell ageing, cell longevity, resistance, HSP, heat shock proteins, thermal shock proteins". This search generated 212 articles. Subsequently, a series of inclusion and exclusion criteria were applied to select the articles of interest to be evaluated. Normal cells subjected to external stressors at low doses increase the number of HSP, causing them to become more resistant. In addition, tumor cells expressing high levels of HSP show greater resistance to treatment and increased cell replication. HSP intervene in the cellular resistance of both normal and tumor cells. CONCLUSIONS In the case of normal cells, the increase in HSP levels makes them respond effectively to an external stressor, increasing their resistance and not causing cell death. In the case of tumor cells, there is an increase in resistance to treatment.
Collapse
Affiliation(s)
- Isabel C Peinado-Ruiz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Antonio M Burgos-Molina
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
6
|
Okolo KO, Orisakwe OE. In vitro antioxidants and hepatoprotective effects of Pleurotus tuber-regium on carbon tetrachloride-treated rats. J Basic Clin Physiol Pharmacol 2020; 32:67-78. [PMID: 32833668 DOI: 10.1515/jbcpp-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/06/2020] [Indexed: 11/15/2022]
Abstract
Objectives This study has characterized the phytoconstituents and evaluated the in vitro antioxidant and hepatoprotective effects of Pleurotus tuber-regium induced by carbon tetrachloride (CCl4). In vitro antioxidant assay of ethanol extract of P. tuber-regium and gas chromatography-mass spectrometry analyses to identify the phytoconstituents were carried out. Methods Sixty rats were divided into six groups of 10 animals in each group and treated as follows for 13 weeks. Group I (control) received 3 mL/kg olive oil intraperitoneal twice weekly in addition to feed and water ad libitum. Group II received CCl4 3 mL/kg twice weekly. Groups III, IV and V received 100, 200 and 500 mg/kg wild edible P. tuber-regium mixed with feed by ingestion daily in addition to 3 mL/kg CCl4 twice weekly, respectively. Group VI received 500 mg P. tuber-regium daily. Liver and body weights were recorded. Liver function tests, oxidative stress biomarkers, bilirubin, ascorbic acid and α-tocopherol were assayed. Histopathology of the liver was carried out. The gas chromatography-mass spectroscopy analysis yielded 10 antioxidants. Results CCl4 increased the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, bilirubin and malondialdehyde from 24±1.778 iu/L, 53±3.7 iu/L, 257±19 iu/L, 0.45±0.03 mg/dL and 1.90±0.42 μmol/L in the control group to 48±2.5 iu/L, 81±2.10 iu/L, 495±38 iu/L, 1.20±0.09 mg/dL and 14.0±2.6 μmol/L in the treated group, respectively. Conclusions P. tuber-regium prevented the necrosis, edema and vein congestion observed in the CCl4-only group. P. tuber-regium is effective in protecting the liver against CCl4-induced damage.
Collapse
Affiliation(s)
- Kenneth O Okolo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Port Harcourt, Elele Rivers State, Nigeria
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.,African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| |
Collapse
|
7
|
Qu H, Ajuwon KM. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress. J Anim Sci 2018; 96:1724-1735. [PMID: 29659877 DOI: 10.1093/jas/sky126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P < 0.05) triacylglycerol accumulation compared with control (37.0 °C). HS increased (P < 0.05) reactive oxygen species level and 3MPA further upregulated (P < 0.05) its level. Heat shock protein 70 (HSP70) gene expression was induced (P < 0.05) by HS compared to control, and PCK1 inhibition with 3MPA attenuated (P < 0.05) its induction by HS. The endoplasmic reticulum (ER) stress markers, C/EBP homologous protein (CHOP) was also upregulated by HS and 3MPA further upregulated (P < 0.05) CHOP mRNA level. These results suggest that with inhibition of PCK1 during HS, in vitro cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.
Collapse
Affiliation(s)
- Huan Qu
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
8
|
Snell TW, Johnston RK. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors. Exp Gerontol 2014; 57:47-56. [PMID: 24835191 DOI: 10.1016/j.exger.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150-300mM glycerol produced 40-50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2-deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | - Rachel K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
9
|
LaConte LEW, Chavan V, Mukherjee K. Identification and glycerol-induced correction of misfolding mutations in the X-linked mental retardation gene CASK. PLoS One 2014; 9:e88276. [PMID: 24505460 PMCID: PMC3914952 DOI: 10.1371/journal.pone.0088276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022] Open
Abstract
The overwhelming amount of available genomic sequence variation information demands a streamlined approach to examine known pathogenic mutations of any given protein. Here we seek to outline a strategy to easily classify pathogenic missense mutations that cause protein misfolding and are thus good candidates for chaperone-based therapeutic strategies, using previously identified mutations in the gene CASK. We applied a battery of bioinformatics algorithms designed to predict potential impact on protein structure to five pathogenic missense mutations in the protein CASK that have been shown to underlie pathologies ranging from X-linked mental retardation to autism spectrum disorder. A successful classification of the mutations as damaging was not consistently achieved despite the known pathogenicity. In addition to the bioinformatics analyses, we performed molecular modeling and phylogenetic comparisons. Finally, we developed a simple high-throughput imaging assay to measure the misfolding propensity of the CASK mutants in situ. Our data suggests that a phylogenetic analysis may be a robust method for predicting structurally damaging mutations in CASK. Mutations in two evolutionarily invariant residues (Y728C and W919R) exhibited a strong propensity to misfold and form visible aggregates in the cytosolic milieu. The remaining mutations (R28L, Y268H, and P396S) showed no evidence of aggregation and maintained their interactions with known CASK binding partners liprin-α3 Mint-1, and Veli, indicating an intact structure. Intriguingly, the protein aggregation caused by the Y728C and W919R mutations was reversed by treating the cells with a chemical chaperone (glycerol), providing a possible therapeutic strategy for treating structural mutations in CASK in the future.
Collapse
Affiliation(s)
- Leslie E. W. LaConte
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Laifenfeld D, Qiu L, Swiss R, Park J, Macoritto M, Will Y, Younis HS, Lawton M. Utilization of causal reasoning of hepatic gene expression in rats to identify molecular pathways of idiosyncratic drug-induced liver injury. Toxicol Sci 2013; 137:234-48. [PMID: 24136188 DOI: 10.1093/toxsci/kft232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drug-induced liver injury (DILI) represents a leading cause of acute liver failure. Although DILI can be discovered in preclinical animal toxicology studies and/or early clinical trials, some human DILI reactions, termed idiosyncratic DILI (IDILI), are less predictable, occur in a small number of individuals, and do not follow a clear dose-response relationship. The emergence of IDILI poses a critical health challenge for patients and a financial challenge for the pharmaceutical industry. Understanding the cellular and molecular mechanisms underlying IDILI is key to the development of models that can assess potential IDILI risk. This study used Reverse Causal Reasoning (RCR), a method to assess activation of molecular signaling pathways, on gene expression data from rats treated with IDILI or pharmacologic/chemical comparators (NON-DILI) at the maximum tolerated dose to identify mechanistic pathways underlying IDILI. Detailed molecular networks involved in mitochondrial injury, inflammation, and endoplasmic reticulum (ER) stress were found in response to IDILI drugs but not negative controls (NON-DILI). In vitro assays assessing mitochondrial or ER function confirmed the effect of IDILI compounds on these systems. Together our work suggests that using gene expression data can aid in understanding mechanisms underlying IDILI and can guide in vitro screening for IDILI. Specifically, RCR should be considered for compounds that do not show evidence of DILI in preclinical animal studies positive for mitochondrial dysfunction and ER stress assays, especially when the therapeutic index toward projected human maximum drug plasma concentration is low.
Collapse
|
11
|
Rakovic A, Grünewald A, Voges L, Hofmann S, Orolicki S, Lohmann K, Klein C. PINK1-Interacting Proteins: Proteomic Analysis of Overexpressed PINK1. PARKINSONS DISEASE 2011; 2011:153979. [PMID: 21437181 PMCID: PMC3062077 DOI: 10.4061/2011/153979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/22/2010] [Indexed: 11/20/2022]
Abstract
Recent publications suggest that the Parkinson's disease- (PD-) related PINK1/Parkin pathway promotes elimination of dysfunctional mitochondria by autophagy. We used tandem affinity purification (TAP), SDS-PAGE, and mass spectrometry as a first step towards identification of possible substrates for PINK1. The cellular abundance of selected identified interactors was investigated by Western blotting. Furthermore, one candidate gene was sequenced in 46 patients with atypical PD. In addition to two known binding partners (HSP90, CDC37), 12 proteins were identified using the TAP assay; four of which are mitochondrially localized (GRP75, HSP60, LRPPRC, and TUFM). Western blot analysis showed no differences in cellular abundance of these proteins comparing PINK1 mutant and control fibroblasts. When sequencing LRPPRC, four exonic synonymous changes and 20 polymorphisms in noncoding regions were detected. Our study provides a list of putative PINK1 binding partners, confirming previously described interactions, but also introducing novel mitochondrial proteins as potential components of the PINK1/Parkin mitophagy pathway.
Collapse
Affiliation(s)
- Aleksandar Rakovic
- Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck, Maria-Goeppert-Straße 1, 23562 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Dasuri K, Nguyen A, Zhang L, Fernandez-Kim OS, Bruce-Keller AJ, Blalock BA, Cabo RD, Keller JN. Comparison of rat liver and brain proteasomes for oxidative stress-induced inactivation: Influence of ageing and dietary restriction. Free Radic Res 2009; 43:28-36. [PMID: 19048434 DOI: 10.1080/10715760802534812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study examined brain and liver derived proteasome complexes to elucidate if there is a differential susceptibility in proteasome complexes from these tissues to undergo inactivation following exposure to oxidative stressors. It then examined the influence of ageing and dietary restriction (DR) on the observed proteasome inactivation. Studies used a filtration based methodology that allows for enrichment of proteasome complexes with less tissue than is required for traditional chromatography procedures. The results indicate that the brain has much lower levels of overall proteasome activity and exhibits increased sensitivity to hydrogen peroxide mediated inactivation as compared to proteasome complexes derived from the liver. Interestingly, the brain proteasome complexes did not appear to have increased susceptibility to 4-hydroxynonenal (HNE)-induced inactivation. Surprisingly, ageing and DR induced minimal effects on oxidative stress mediated proteasome inhibition. These results indicate that the brain not only has lower levels of proteasome activity compared to the liver, but is also more susceptible to inactivation following exposure to some (but certainly not all) oxidative stressors. This data also suggest that ageing and DR may not significantly modulate the resistance of the proteasome to inactivation in some experimental settings.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|