1
|
Mitochondrial function and nutrient sensing pathways in ageing: enhancing longevity through dietary interventions. Biogerontology 2022; 23:657-680. [PMID: 35842501 DOI: 10.1007/s10522-022-09978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
Collapse
|
2
|
Karatas T, Onalan S, Yildirim S. Effects of prolonged fasting on levels of metabolites, oxidative stress, immune-related gene expression, histopathology, and DNA damage in the liver and muscle tissues of rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1119-1132. [PMID: 34057672 DOI: 10.1007/s10695-021-00949-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to assess the impacts of prolonged fasting (70 and 120 days) on the morphological, biochemical, oxidative stress responses, immune-related gene expression, histopathology, and DNA damage in rainbow trout. Final weight (FW), hepatosomatic index (HSI), and condition factor (CF) significantly decreased in both 70 and 120 days of fasting compared to the pre-fasting group (p < 0.05). Fasting led to a significant reduction in serum blood metabolites (glucose, total protein, triglyceride, T. cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL)) and endogenous reserves (protein and lipid). However, plasma acetylcholinesterase (AChE) activity, aspartate aminotransferase (AST), alanine aminotransferase (ALT), interleukin (IL1), tumor necrosis factor (TNF1α), and transferrin (TF) increased significantly (p < 0.05). While malondialdehyde (MDA) levels compared to the pre-fasting group increased in the liver and muscle tissues (70 and 120 days), glutathione (GSH) enzyme activities decreased significantly in both tissues (p < 0.05). Histopathologically, both fasting groups (70 and 120 days) when compared to the pre-fasting group led to steatosis, necrosis and degeneration in hepatocytes, inflammation and hyperemia in the liver tissue and hyaline degeneration, atrophy, and inflammation in muscle tissue. Additionally, 8-OHdG levels of the liver and muscle tissues at 120 days' fasting were more severe according to 70 days' fasting. Finally, blood, the liver, and muscle tissues may be helpful to assess the impacts of fasting and fasting stress in rainbow trout.
Collapse
Affiliation(s)
- Tayfun Karatas
- Health Services Vocational School, Agri Ibrahim Cecen University, TR-04100, Agri, Turkey.
| | - Sukru Onalan
- Department of Fish Disease, Faculty of Fisheries, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
Bermejo-Poza R, Fernández-Muela M, De la Fuente J, Pérez C, de Chavarri EG, Díaz MT, Torrent F, Villarroel M. Physio-metabolic response of rainbow trout during prolonged food deprivation before slaughter. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:253-265. [PMID: 30140961 DOI: 10.1007/s10695-018-0559-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Fish normally undergo periods of food deprivation that are longer than non-hibernating mammals. In aquacultured rainbow trout (Oncorhynchus mykiss), it is unclear how fasting may affect their physiological adaptative response, especially when they are normally fed daily. In addition, that response may vary with temperature, making it necessary to express fasting duration in terms of degree days. In the current study, trout were fasted for 5, 10, and 20 days (55, 107, and 200 degree days (°C d), respectively). To assess the physiological response of fish to fasting, different biometric, blood, plasma, and metabolic parameters were measured, as well as liver fatty acid composition. The fish weight, condition factor, and the hepato-somatic index of 5-day fasted trout were not significantly different from those of control fish. Gastric pH increased as fasting progressed while plasma concentrations of glucose, triglycerides, and total proteins decreased significantly after 10 days of fasting, while the percentage of non-esterified fatty acids increased. There were no significant differences in plasma ions (sodium, potassium, and calcium), except for chloride ion which decreased after 5 days of fasting. Liver glycogen decreased after 5 days of fasting while glycogen concentration in muscle did not decrease until 20 days of fasting. Liver color presented a higher chroma after 5 days of fasting, suggesting a mobilization of reserves. Finally, acetylcholinesterase activity in the brain was not affected by food deprivation but increased after 10 days of fasting in liver and muscle, suggesting the mobilization of body reserves, but without severely affecting basal metabolism.
Collapse
Affiliation(s)
- Rubén Bermejo-Poza
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Montserrat Fernández-Muela
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Jesús De la Fuente
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Concepción Pérez
- Department of Physiology, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Elisabet González de Chavarri
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - María Teresa Díaz
- Department of Food Technology, INIA, Ctra. La Coruña, Km 7500, 28040, Madrid, Spain
| | - Fernando Torrent
- Department of Forestry and Fisheries, College of Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Morris Villarroel
- Department of Animal Science, College of Agricultural Engineering, Technical University of Madrid, Avenida Puerta de Hierro 2, 28040, Madrid, Spain
| |
Collapse
|
4
|
Hadem IKH, Majaw T, Kharbuli B, Sharma R. Beneficial effects of dietary restriction in aging brain. J Chem Neuroanat 2017; 95:123-133. [PMID: 29031555 DOI: 10.1016/j.jchemneu.2017.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/14/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Aging is a multifactorial complex process that leads to the deterioration of biological functions wherein its underlying mechanism is not fully elucidated. It affects the organism at the molecular and cellular level that contributes to the deterioration of structural integrity of the organs. The central nervous system is the most vulnerable organ affected by aging and its effect is highly heterogeneous. Aging causes alteration in the structure, metabolism and physiology of the brain leading to impaired cognitive and motor-neural functions. Dietary restriction (DR), a robust mechanism that extends lifespan in various organisms, ameliorates brain aging by reducing oxidative stress, improving mitochondrial function, activating anti-inflammatory responses, promoting neurogenesis and increasing synaptic plasticity. It also protects and prevents age-related structural changes. DR alleviates many age-associated diseases including neurodegeneration and improves cognitive functions. DR inhibits/activates nutrient signaling cascades such as insulin/IGF-1, mTOR, AMPK and sirtuins. Because of its sensitivity to energy status and hormones, AMPK is considered as the global nutrient sensor. This review will present an elucidative potential role of dietary restriction in the prevention of phenotypic features during aging in brain and its diverse mechanisms.
Collapse
Affiliation(s)
| | - Teikur Majaw
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Babiangshisha Kharbuli
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
5
|
Suchiang K, Sharma R. Age-dependent modulation of fasting and long-term dietary restriction on acetylcholinesterase in non-neuronal tissues of mice. Mol Cell Biochem 2016; 419:135-45. [PMID: 27379505 DOI: 10.1007/s11010-016-2757-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022]
Abstract
Dietary restriction (DR) without malnutrition is a robust intervention that extends lifespan and slows the onset of nervous system deficit and age-related diseases in diverse organisms. Acetylcholinesterase (AChE), a thoroughly studied enzyme better known for hydrolyzing acetylcholine (ACh) in neuronal tissues, has recently been linked with multiple unrelated biological functions in different non-neuronal tissues. In the present study, the activity and protein expression level of AChE in liver, heart, and kidney of young (1 month), adult (6 month), and aged (18 month) mice were investigated. We also studied age- and tissue-specific changes in AChE activity and protein expression level after the mice were subjected to 24-h fasting and long-term DR. Our results showed that AChE activity and protein expression in kidney and heart of aged mice decreased significantly in comparison with young mice. On the contrary, long-term DR decreases the AChE activity and the protein expression level in all tissues irrespective of ages studied. We summarized that changes in AChE with age in different tissues studied reflects its different roles at different phases of an organism's life. Conversely, the cumulative modulation manifested in the form of lowering AChE by long-term DR may prevent the futile synthesis and accumulation of unwanted AChE besides the added compensatory benefit of enhanced ACh availability needed during the period of starvation. This, in turn, may help in preventing the declining homeostatic roles of this important neurotransmitter in different tissues.
Collapse
Affiliation(s)
- Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India
| |
Collapse
|
6
|
Majaw T, Sharma R. Arginase I expression is upregulated by dietary restriction in the liver of mice as a function of age. Mol Cell Biochem 2015; 407:1-7. [PMID: 25976668 DOI: 10.1007/s11010-015-2448-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023]
Abstract
Arginase is a cytosolic enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. This reaction comprises the final step of the urea cycle, which provides the principal route for the disposal of nitrogenous waste from protein catabolism. The present study investigates the normal endogenous activity and expression level of arginase I as a function of age in the liver of 2-, 6-, and 18-month-old mice. The effect of dietary restriction (DR) on the expression of arginase I was also investigated in two age groups of mice, 2- and 18-month old. Arginase I activity was assessed spectrophotometrically, and the level of arginase I protein was further confirmed by Western blotting analyses. Arginase I mRNA level was measured using real-time PCR. Our results show that the arginase I activity (U/mg protein) and protein level in liver was higher in 2-month-old mice and decreased gradually with age. In contrast, arginase I mRNA was observed to be higher in the older mice as compared to the younger mice. DR was seen to upregulate the arginase I activity and expression in both 2- and 18-month-old mice. The findings concluded that arginase I is down-regulated with the advancement of age in the liver of mice and is upregulated by DR. This suggests that DR plays an important role in maintaining related metabolic processes as a function of age in mice.
Collapse
Affiliation(s)
- Teikur Majaw
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793 022, India
| | | |
Collapse
|
7
|
Age-dependent increased expression and activity of inorganic pyrophosphatase in the liver of male mice and its further enhancement with short- and long-term dietary restriction. Biogerontology 2013; 15:81-6. [PMID: 24271717 DOI: 10.1007/s10522-013-9481-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/09/2013] [Indexed: 02/07/2023]
Abstract
Intracellular orthophosphate and inorganic pyrophosphate (PPi) are by-products of multiple biosynthetic reactions. PPi hydrolysis by soluble inorganic pyrophosphatase (iPPase) has been considered as an important homeostatic mechanism. We investigated the expression and activities (U/mg protein) of iPPase in the liver of young and old mice subjected to short- and long-term dietary restriction. The expression level of iPPase was ascertained by the Western blot analysis using anti-iPPase and differential polymerase chain reaction using iPPase specific primer. Older mice showed a significant increase in the expression and activity of iPPase as compared to younger ones. Short-term fasting of 24 h increased the expression and activity of iPPase in the liver of both young and old mice which were reversed upon 24 h of re-feeding them. However, both young and old mice on long-term dietary restriction showed a cumulative increase in the expression and activity of iPPase when compared with their age-matched controls. This might be due to accumulative adaptation to refill energy deficiency of long-term dietary restricted mice for ATP generation via oxidative phosphorylation, where fatty acid activation could be driven by elevated iPPase.
Collapse
|