1
|
Levy G, Levin B. An Evolution-Based Model of Causation for Aging-Related Diseases and Intrinsic Mortality: Explanatory Properties and Implications for Healthy Aging. Front Public Health 2022; 10:774668. [PMID: 35252084 PMCID: PMC8894190 DOI: 10.3389/fpubh.2022.774668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/10/2022] [Indexed: 01/07/2023] Open
Abstract
Aging-related diseases are the most prevalent diseases in advanced countries nowadays, accounting for a substantial proportion of mortality. We describe the explanatory properties of an evolution-based model of causation (EBMC) applicable to aging-related diseases and intrinsic mortality. The EBMC takes the sufficient and component causes model of causation as a starting point and develops it using evolutionary and statistical theories. Genetic component causes are classified as “early-onset” or “late-onset” and environmental component causes as “evolutionarily conserved” or “evolutionarily recent.” Genetic and environmental component causes are considered to occur as random events following time-to-event distributions, and sufficient causes are classified according to whether or not their time-to-event distributions are “molded” by the declining force of natural selection with increasing age. We obtain for each of these two groups different time-to-event distributions for disease incidence or intrinsic mortality asymptotically (i.e., for a large number of sufficient causes). The EBMC provides explanations for observations about aging-related diseases concerning the penetrance of genetic risk variants, the age of onset of monogenic vs. sporadic forms, the meaning of “age as a risk factor,” the relation between frequency and age of onset, and the emergence of diseases associated with the modern Western lifestyle. The EBMC also provides an explanation of the Gompertz mortality model at the fundamental level of genetic causes and involving evolutionary biology. Implications for healthy aging are examined under the scenarios of health promotion and postponed aging. Most importantly from a public health standpoint, the EBMC implies that primary prevention through changes in lifestyle and reduction of environmental exposures is paramount in promoting healthy aging.
Collapse
Affiliation(s)
- Gilberto Levy
- Independent Researcher, Rio de Janeiro, Brazil
- *Correspondence: Gilberto Levy
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
The selection force weakens with age because ageing evolves and not vice versa. Nat Commun 2022; 13:686. [PMID: 35115526 PMCID: PMC8813929 DOI: 10.1038/s41467-022-28254-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
According to the classic theory of life history evolution, ageing evolves because selection on traits necessarily weakens throughout reproductive life. But this inexorable decline of the selection force with adult age was shown to crucially depend on specific assumptions that are not necessarily fulfilled. Whether ageing still evolves upon their relaxation remains an open problem. Here, we propose a fully dynamical model of life history evolution that does not presuppose any specific pattern the force of selection should follow. The model shows: (i) ageing can stably evolve, but negative ageing cannot; (ii) when ageing is a stable equilibrium, the associated selection force decreases with reproductive age; (iii) non-decreasing selection is either a transient or an unstable phenomenon. Thus, we generalize the classic theory of the evolution of ageing while overturning its logic: the decline of selection with age evolves dynamically, and is not an implicit consequence of certain assumptions. A decline of selection with age is generally seen as the reason that ageing evolves. But selection can also increase with age. What happens then? This work shows that ageing nevertheless evolves, and so does the decline of selection with age.
Collapse
|
3
|
Abstract
The classical evolutionary theories of aging suggest that aging evolves due to insufficient selective pressure against it. In these theories, declining selection pressure with age leads to aging through genes or resource allocations, implying that aging could potentially be stalled were genes, resource allocation, or selection pressure somewhat different. While these classical evolutionary theories are undeniably part of a description of the evolution of aging, they do not explain the diversity of aging patterns, and they do not constitute the only possible evolutionary explanation. Without denying selection pressure a role in the evolution of aging, we argue that the origin and diversity of aging should also be sought in the nature and evolution of organisms that are, from their very physiological make up, unmaintainable. Drawing on advances in developmental biology, genetics, biochemistry, and complex systems theory since the classical theories emerged, we propose a fresh evolutionary-mechanistic theory of aging, the Danaid theory. We argue that, in complex forms of life like humans, various restrictions on maintenance and repair may be inherent, and we show how such restrictions are laid out during development. We further argue that there is systematic variation in these constraints across taxa, and that this is a crucial factor determining variation in aging and lifespan across the tree of life. Accordingly, the core challenge for the field going forward is to map and understand the mosaic of constraints, trade-offs, chance events, and selective pressures that shape aging in diverse ways across diverse taxa.
Collapse
Affiliation(s)
- Maarten J Wensink
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Alan A Cohen
- Department of Family Medicine, Research Centre on Aging, CHUS Research Centre, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Lehtonen J. Longevity and the drift barrier: Bridging the gap between Medawar and Hamilton. Evol Lett 2020; 4:382-393. [PMID: 32774886 PMCID: PMC7403686 DOI: 10.1002/evl3.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
Most organisms have finite life spans. The maximum life span of mammals, for example, is at most some years, decades, or centuries. Why not thousands of years or more? Can we explain and predict maximum life spans theoretically, based on other traits of organisms and associated ecological constraints? Existing theory provides reasons for the prevalence of ageing, but making explicit quantitative predictions of life spans is difficult. Here, I show that there are important unappreciated differences between two backbones of the theory of senescence: Peter Medawar's verbal model, and William Hamilton's subsequent mathematical model. I construct a mathematical model corresponding more closely to Medawar's verbal description, incorporating mutations of large effect and finite population size. In this model, the drift barrier provides a standard by which the limits of natural selection on age‐specific mutations can be measured. The resulting model reveals an approximate quantitative explanation for typical maximum life spans. Although maximum life span is expected to increase with population size, it does so extremely slowly, so that even the largest populations imaginable have limited ability to maintain long life spans. Extreme life spans that are observed in some organisms are explicable when indefinite growth or clonal reproduction is included in the model.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Faculty of Science School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
5
|
Cohen AA. Aging across the tree of life: The importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2680-2689. [PMID: 28690188 DOI: 10.1016/j.bbadis.2017.05.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Use of model organisms in aging research is problematic because our ability to extrapolate across the tree of life is not clear. On one hand, there are conserved pathways that regulate lifespan in organisms including yeast, nematodes, fruit flies, and mice. On the other, many intermediate taxa across the tree of life appear not to age at all, and there is substantial variation in aging mechanisms and patterns, sometimes even between closely related species. There are good evolutionary and mechanistic reasons to expect this complexity, but it means that model organisms must be used with caution and that results must always be interpreted through a broader comparative framework. Additionally, it is essential to include research on non-traditional and unusual species, and to integrate mechanistic and demographic research. There will be no simple answers regarding the biology of aging, and research approaches should reflect this. This article is part of a Special Issue entitled: Animal models of aging - edited by Houtkooper Riekelt.
Collapse
Affiliation(s)
- Alan A Cohen
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
6
|
Evolutionary significance of ageing in the wild. Exp Gerontol 2015; 71:89-94. [DOI: 10.1016/j.exger.2015.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
|
7
|
|
8
|
Wensink MJ, Wrycza TF, Baudisch A. Interaction mortality: senescence may have evolved because it increases lifespan. PLoS One 2014; 9:e109638. [PMID: 25299047 PMCID: PMC4192302 DOI: 10.1371/journal.pone.0109638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/07/2014] [Indexed: 01/13/2023] Open
Abstract
Given an extrinsic challenge, an organism may die or not depending on how the threat interacts with the organism's physiological state. To date, such interaction mortality has been only a minor factor in theoretical modeling of senescence. We describe a model of interaction mortality that does not involve specific functions, making only modest assumptions. Our model distinguishes explicitly between the physiological state of an organism and potential extrinsic, age-independent threats. The resulting mortality may change with age, depending on whether the organism's state changes with age. We find that depending on the physiological constraints, any outcome, be it 'no senescence' or 'high rate of senescence', can be found in any environment; that the highest optimal rate of senescence emerges for an intermediate physiological constraint, i.e. intermediate strength of trade-off; and that the optimal rate of senescence as a function of the environment is driven by the way the environment changes the effect of the organism's state on mortality. We conclude that knowledge about the environment, physiology and their interaction is necessary before reasonable predictions about the evolution of senescence can be made.
Collapse
Affiliation(s)
- Maarten J. Wensink
- Max Planck Research Group 'Modeling the Evolution of Aging, Max Planck Institute for Demographic Research, Rostock, Germany
- Leyden Academy on Vitality and Ageing, Leiden, The Netherlands
- * E-mail:
| | - Tomasz F. Wrycza
- Max Planck Research Group 'Modeling the Evolution of Aging, Max Planck Institute for Demographic Research, Rostock, Germany
| | - Annette Baudisch
- Max Planck Research Group 'Modeling the Evolution of Aging, Max Planck Institute for Demographic Research, Rostock, Germany
- Max-Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
9
|
Rattan SIS. Aging is not a disease: implications for intervention. Aging Dis 2014; 5:196-202. [PMID: 24900942 PMCID: PMC4037311 DOI: 10.14336/ad.2014.0500196] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 12/23/2022] Open
Abstract
Aging of biological systems occurs in spite of numerous complex pathways of maintenance, repair and defense. There are no gerontogenes which have the specific evolutionary function to cause aging. Although aging is the common cause of all age-related diseases, aging in itself cannot be considered a disease. This understanding of aging as a process should transform our approach towards interventions from developing illusory anti-aging treatments to developing realistic and practical methods for maintaining health throughout the lifespan. The concept of homeodynamic space can be a useful one in order to identify a set of measurable, evidence-based and demonstratable parameters of health, robustness and resilience. Age-induced health problems, for which there are no other clear-cut causative agents, may be better tackled by focusing on health mechanisms and their maintenance, rather than only disease management and treatment. Continuing the disease-oriented research and treatment approaches, as opposed to health-oriented and preventive strategies, are economically, socially and psychologically unsustainable.
Collapse
Affiliation(s)
- Suresh I. S. Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| |
Collapse
|
10
|
Wensink M, Westendorp RGJ, Baudisch A. The causal pie model: an epidemiological method applied to evolutionary biology and ecology. Ecol Evol 2014; 4:1924-30. [PMID: 24963386 PMCID: PMC4063485 DOI: 10.1002/ece3.1074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 11/11/2022] Open
Abstract
A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.
Collapse
Affiliation(s)
- Maarten Wensink
- Max Planck Research Group: Modeling the Evolution of Aging, Max Planck Institute for Demographic Research Konrad Zuse Strasse 1, Rostock, 18057, Germany ; Leyden Academy on Vitality and Ageing, Poortgebouw LUMC Rijnsburgerweg 10, AA Leiden, 2333, The Netherlands
| | - Rudi G J Westendorp
- Leyden Academy on Vitality and Ageing, Poortgebouw LUMC Rijnsburgerweg 10, AA Leiden, 2333, The Netherlands ; Department of Gerontology and Geriatrics, Leiden University Medical Center C2-R, PO Box 9600, RC Leiden, 2300, The Netherlands
| | - Annette Baudisch
- Max Planck Research Group: Modeling the Evolution of Aging, Max Planck Institute for Demographic Research Konrad Zuse Strasse 1, Rostock, 18057, Germany
| |
Collapse
|
11
|
Wensink MJ, Wrycza TF, Baudisch A. No senescence despite declining selection pressure: Hamilton's result in broader perspective. J Theor Biol 2014; 347:176-81. [DOI: 10.1016/j.jtbi.2013.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 11/17/2022]
|
12
|
Tsakiri EN, Iliaki KK, Höhn A, Grimm S, Papassideri IS, Grune T, Trougakos IP. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med 2013; 65:1155-1163. [PMID: 23999505 DOI: 10.1016/j.freeradbiomed.2013.08.186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 01/05/2023]
Abstract
Advanced glycation end product (AGE)-modified proteins are formed by the nonenzymatic glycation of free amino groups of proteins and, along with lipofuscin (a highly oxidized aggregate of covalently cross-linked proteins, sugars, and lipids), have been found to accumulate during aging and in several age-related diseases. As the in vivo effects of diet-derived AGEs or lipofuscin remain elusive, we sought to study the impact of oral administration of glucose-, fructose-, or ribose-modified albumin or of artificial lipofuscin in a genetically tractable model organism. We report herein that continuous feeding of young Drosophila flies with culture medium enriched in AGEs or in lipofuscin resulted in reduced locomotor performance and in accelerated rates of AGE-modified proteins and carbonylated proteins accumulation in the somatic tissues and hemolymph of flies, as well as in a significant reduction of flies health span and life span. These phenotypic effects were accompanied by reduced proteasome peptidase activities in both the hemolymph and the somatic tissues of flies and higher levels of oxidative stress; furthermore, oral administration of AGEs or lipofuscin in flies triggered an upregulation of the lysosomal cathepsin B, L activities. Finally, RNAi-mediated cathepsin D knockdown reduced flies longevity and significantly augmented the deleterious effects of AGEs and lipofuscin, indicating that lysosomal cathepsins reduce the toxicity of diet-derived AGEs or lipofuscin. Our in vivo studies demonstrate that chronic ingestion of AGEs or lipofuscin disrupts proteostasis and accelerates the functional decline that occurs with normal aging.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Kalliopi K Iliaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Annika Höhn
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stefanie Grimm
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Tilman Grune
- Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15784, Greece.
| |
Collapse
|