1
|
Li B, Yu W, Verkhratsky A. Trace metals and astrocytes physiology and pathophysiology. Cell Calcium 2024; 118:102843. [PMID: 38199057 DOI: 10.1016/j.ceca.2024.102843] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Ikerbasque, Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania.
| |
Collapse
|
2
|
Rodríguez JJ, Zallo F, Gardenal E, Cabot J, Busquets X. Entorhinal cortex astrocytic atrophy in human frontotemporal dementia. Brain Struct Funct 2024:10.1007/s00429-024-02763-x. [PMID: 38308043 DOI: 10.1007/s00429-024-02763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
The pathophysiology of Fronto Temporal Dementia (FTD) remains poorly understood, specifically the role of astroglia. Our aim was to explore the hypothesis of astrocytic alterations as a component for FTD pathophysiology. We performed an in-depth tri-dimensional (3-D) anatomical and morphometric study of glial fibrillary acidic protein (GFAP)-positive and glutamine synthetase (GS)-positive astrocytes in the human entorhinal cortex (EC) of FTD patients. The studies at this level in the different types of human dementia are scarce. We observed a prominent astrocyte atrophy of GFAP-positive astrocytes and co-expressing GFAP/GS astrocytes, characterised by a decrease in area and volume, whilst minor changes in GS-positive astrocytes in FTD compared to non-dementia controls (ND) samples. This study evidences the importance of astrocyte atrophy and dysfunction in human EC. We hypothesise that FTD is not only a neuropathological disease, but also a gliopathological disease having a major relevance in the understanding the astrocyte role in FTD pathological processes and development.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
- Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - F Zallo
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - E Gardenal
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - J Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| |
Collapse
|
3
|
Rodríguez JJ, Gardenal E, Zallo F, Arrue A, Cabot J, Busquets X. Astrocyte S100β expression and selective differentiation to GFAP and GS in the entorhinal cortex during ageing in the 3xTg-Alzheimer's disease mouse model. Acta Histochem 2024; 126:152131. [PMID: 38159478 DOI: 10.1016/j.acthis.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The study of astrocytes and its role in the development and evolution of neurodegenerative diseases, including Alzheimer's disease (AD) is essential to fully understand their aetiology. The aim if this study is to deepen into the concept of the heterogeneity of astrocyte subpopulations in the EC and in particular the identification of differentially functioning astrocyte subpopulations that respond differently to AD progression. S100β protein belongs to group of small calcium regulators of cell membrane channels and pumps that are expressed by astrocytes and is hypothesised to play and have a relevant role in AD development. We analysed the selective differentiation of S100β-positive astrocytes into Glutamine synthetase (GS) and Glial fibrillary acidic protein (GFAP)-positive sub-groups in the entorhinal cortex (EC) of AD triple transgenic animal model (3xTg-AD). EC is the brain region earliest affected in humans AD but also in this closest animal model regarding their pathology and time course. We observed no changes in the number of S100β-positive astrocytes between 1 and 18 months of age in the EC of 3xTg-AD mice. However, we identified relevant morphological changes in S100β/GFAP positive astrocytes showing a significant reduction in their surface and volume whilst an increase in number and percentage. Furthermore, the percentage of S100β/GS positive astrocyte population was also increased in 18 months old 3xTg-AD mice compared to the non-Tg mice. Our findings reveal the presence of differentially controlled astrocyte populations that respond differently to AD progression in the EC of 3xTg-AD mice. These results highpoints the major astrocytic role together with its early and marked affection in AD and arguing in favour of its importance in neurogenerative diseases and potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - E Gardenal
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - F Zallo
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - A Arrue
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
4
|
Rodríguez JJ, Zallo F, Gardenal E, Cabot J, Busquets X. Prominent and conspicuous astrocyte atrophy in human sporadic and familial Alzheimer's disease. Brain Struct Funct 2023; 228:2103-2113. [PMID: 37730895 PMCID: PMC10587264 DOI: 10.1007/s00429-023-02707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Pathophysiology of sporadic Alzheimer's disease (SAD) and familial Alzheimer's disease (FAD) remains poorly known, including the exact role of neuroglia and specifically astroglia, in part because studies of astrocytes in human Alzheimer's disease (AD) brain samples are scarce. As far as we know, this is the first study of a 3-D immunohistochemical and microstructural analysis of glial fibrillary acidic protein (GFAP)- and glutamine synthetase (GS)-positive astrocytes performed in the entorhinal cortex (EC) of human SAD and FAD samples. In this study, we report prominent atrophic changes in GFAP and GS astrocytes in the EC of both SAD and FAD characterised by a decrease in area and volume when compared with non-demented control samples (ND). Furthermore, we did not find neither astrocytic loss nor astrocyte proliferation or hypertrophy (gliosis). In contrast with the astrogliosis classically accepted hypothesis, our results show a highly marked astrocyte atrophy that could have a major relevance in AD pathological processes being fundamental and key for AD mnesic and cognitive alterations equivalent in both SAD and FAD.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009/48940, Bilbao/Leioa, Vizcaya, Spain.
| | - F Zallo
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009/48940, Bilbao/Leioa, Vizcaya, Spain
| | - E Gardenal
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009/48940, Bilbao/Leioa, Vizcaya, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| |
Collapse
|
5
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Rodríguez JJ, Terzieva S, Yeh CY, Gardenal E, Zallo F, Verkhratsky A, Busquets X. Neuroanatomical and morphometric study of S100β positive astrocytes in the entorhinal cortex during ageing in the 3xTg-Alzehimer's disease mouse model. Neurosci Lett 2023; 802:137167. [PMID: 36894021 DOI: 10.1016/j.neulet.2023.137167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Astrocytes contribute to the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we report the neuroanatomical and morphometric analysis of astrocytes in the entorhinal cortex (EC) of the aged wild type (WT) and triple transgenic (3xTg-AD) mouse model of AD. Using 3D confocal microscopy, we determined the surface area and volume of positive astrocytic profiles in male mice (WT and 3xTg-AD) from 1 to 18 months of age. We showed that S100β-positive astrocytes were equally distributed throughout the entire EC in both animal types and showed no changes in Nv (number of cells/mm3) nor in their distribution at the different ages studied. These positive astrocytes, demonstrated an age-dependent gradual increase in their surface area and in their volume starting at 3 months of age, in both WT and 3xTg-AD mice. This last group demonstrated a large increase in both surface area and volume at 18 months of age when the burden of pathological hallmarks of AD is present (69.74% to 76.73% in the surface area and the volume, for WT and 3xTg-AD mice respectively). We observed that these changes were due to the enlargement of the cell processes and to less extend the somata. In fact, the volume of the cell body was increased by 35.82% in 18-month-old 3xTg-AD compared to WT. On the other hand, the increase on the astrocytic processes were detected as soon as 9 months of age where we found an increase of surface area and volume (36.56% and 43.73%, respectively) sustained till 18 month of age (93.6% and 113.78%, respectively) when compared age-matched non-Tg mice. Moreover, we demonstrated that these hypertrophic S100β-positive astrocytes were mainly associated with Aβ plaques. Our results show a severe atrophy in GFAP cytoskeleton in all cognitive areas; whilst within the EC astrocytes independent to this atrophy show no changes in GS and S100β; which can play a key role in the memory impairment.
Collapse
Affiliation(s)
- J J Rodríguez
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain.
| | - S Terzieva
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - C Y Yeh
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - E Gardenal
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - F Zallo
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - A Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
7
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
8
|
Ketamine Alters Functional Plasticity of Astroglia: An Implication for Antidepressant Effect. Life (Basel) 2021; 11:life11060573. [PMID: 34204579 PMCID: PMC8234122 DOI: 10.3390/life11060573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.
Collapse
|
9
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
10
|
Hudd F, Shiel A, Harris M, Bowdler P, McCann B, Tsivos D, Wearn A, Knight M, Kauppinen R, Coulthard E, White P, Conway ME. Novel Blood Biomarkers that Correlate with Cognitive Performance and Hippocampal Volumetry: Potential for Early Diagnosis of Alzheimer’s Disease. J Alzheimers Dis 2019; 67:931-947. [PMID: 30689581 DOI: 10.3233/jad-180879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fred Hudd
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Anna Shiel
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Matthew Harris
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Paul Bowdler
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Bryony McCann
- Clinical Research and Imaging Centre (CRICBristol), University of Bristol, Bristol, UK
| | - Demitra Tsivos
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Alfie Wearn
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Michael Knight
- Clinical Research and Imaging Centre (CRICBristol), University of Bristol, Bristol, UK
| | - Risto Kauppinen
- Clinical Research and Imaging Centre (CRICBristol), University of Bristol, Bristol, UK
| | - Elizabeth Coulthard
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Paul White
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | | |
Collapse
|
11
|
Liu CY, Yang Y, Ju WN, Wang X, Zhang HL. Emerging Roles of Astrocytes in Neuro-Vascular Unit and the Tripartite Synapse With Emphasis on Reactive Gliosis in the Context of Alzheimer's Disease. Front Cell Neurosci 2018; 12:193. [PMID: 30042661 PMCID: PMC6048287 DOI: 10.3389/fncel.2018.00193] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023] Open
Abstract
Astrocytes, which are five-fold more numerous than neurons in the central nervous system (CNS), are traditionally viewed to provide simple structural and nutritional supports for neurons and to participate in the composition of the blood brain barrier (BBB). In recent years, the active roles of astrocytes in regulating cerebral blood flow (CBF) and in maintaining the homeostasis of the tripartite synapse have attracted increasing attention. More importantly, astrocytes have been associated with the pathogenesis of Alzheimer's disease (AD), a major cause of dementia in the elderly. Although microglia-induced inflammation is considered important in the development and progression of AD, inflammation attributable to astrogliosis may also play crucial roles. A1 reactive astrocytes induced by inflammatory stimuli might be harmful by up-regulating several classical complement cascade genes thereby leading to chronic inflammation, while A2 induced by ischemia might be protective by up-regulating several neurotrophic factors. Here we provide a concise review of the emerging roles of astrocytes in the homeostasis maintenance of the neuro-vascular unit (NVU) and the tripartite synapse with emphasis on reactive astrogliosis in the context of AD, so as to pave the way for further research in this area, and to search for potential therapeutic targets of AD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wei-Na Ju
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Life Sciences, The National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
12
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
13
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1076] [Impact Index Per Article: 153.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
14
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
15
|
Verkhratsky A, Steardo L, Parpura V, Montana V. Translational potential of astrocytes in brain disorders. Prog Neurobiol 2016; 144:188-205. [PMID: 26386136 PMCID: PMC4794425 DOI: 10.1016/j.pneurobio.2015.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
Fundamentally, all brain disorders can be broadly defined as the homeostatic failure of this organ. As the brain is composed of many different cells types, including but not limited to neurons and glia, it is only logical that all the cell types/constituents could play a role in health and disease. Yet, for a long time the sole conceptualization of brain pathology was focused on the well-being of neurons. Here, we challenge this neuron-centric view and present neuroglia as a key element in neuropathology, a process that has a toll on astrocytes, which undergo complex morpho-functional changes that can in turn affect the course of the disorder. Such changes can be grossly identified as reactivity, atrophy with loss of function and pathological remodeling. We outline the pathogenic potential of astrocytes in variety of disorders, ranging from neurotrauma, infection, toxic damage, stroke, epilepsy, neurodevelopmental, neurodegenerative and psychiatric disorders, Alexander disease to neoplastic changes seen in gliomas. We hope that in near future we would witness glial-based translational medicine with generation of deliverables for the containment and cure of disorders. We point out that such as a task will require a holistic and multi-disciplinary approach that will take in consideration the concerted operation of all the cell types in the brain.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Luca Steardo
- Department of Psychiatry, University of Naples, SUN, Largo Madonna delle Grazie, Naples, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine and Atomic Force Microscopy & Nanotechnology Laboratories, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
16
|
Astroglial calcium signalling in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:1005-1012. [PMID: 27545605 DOI: 10.1016/j.bbrc.2016.08.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
Neuroglial contribution to Alzheimer's disease (AD) is pathologically relevant and highly heterogeneous. Reactive astrogliosis and activation of microglia contribute to neuroinflammation, whereas astroglial and oligodendroglial atrophy affect synaptic transmission and underlie the overall disruption of the central nervous system (CNS) connectome. Astroglial function is tightly integrated with the intracellular ionic signalling mediated by complex dynamics of cytosolic concentrations of free Ca2+ and Na+. Astroglial ionic signalling is mediated by plasmalemmal ion channels, mainly associated with ionotropic receptors, pumps and solute carrier transporters, and by intracellular organelles comprised of the endoplasmic reticulum and mitochondria. The relative contribution of these molecular cascades/organelles can be plastically remodelled in development and under environmental stress. In AD astroglial Ca2+ signalling undergoes substantial reorganisation due to an abnormal regulation of expression of Ca2+ handling molecular cascades.
Collapse
|
17
|
Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323:170-82. [DOI: 10.1016/j.neuroscience.2015.01.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
|
18
|
Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano JJ, Jendelova P, Sykova E. Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2016; 17:ijms17020152. [PMID: 26821012 PMCID: PMC4783886 DOI: 10.3390/ijms17020152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 12/26/2022] Open
Abstract
The transplantation of stem cells may have a therapeutic effect on the pathogenesis and progression of neurodegenerative disorders. In the present study, we transplanted human mesenchymal stem cells (MSCs) into the lateral ventricle of a triple transgenic mouse model of Alzheimer´s disease (3xTg-AD) at the age of eight months. We evaluated spatial reference and working memory after MSC treatment and the possible underlying mechanisms, such as the influence of transplanted MSCs on neurogenesis in the subventricular zone (SVZ) and the expression levels of a 56 kDa oligomer of amyloid β (Aβ*56), glutamine synthetase (GS) and glutamate transporters (Glutamate aspartate transporter (GLAST) and Glutamate transporter-1 (GLT-1)) in the entorhinal and prefrontal cortices and the hippocampus. At 14 months of age we observed the preservation of working memory in MSC-treated 3xTg-AD mice, suggesting that such preservation might be due to the protective effect of MSCs on GS levels and the considerable downregulation of Aβ*56 levels in the entorhinal cortex. These changes were observed six months after transplantation, accompanied by clusters of proliferating cells in the SVZ. Since the grafted cells did not survive for the whole experimental period, it is likely that the observed effects could have been transiently more pronounced at earlier time points than at six months after cell application.
Collapse
Affiliation(s)
- Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| | - Magdalena Kulijewicz-Nawrot
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
| | - Jose Julio Rodrigez-Arellano
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Functional Neuroanatomy Laboratory, Department of Neuroscience, Faculty of Medicine, the University of the Basque Country, 48940 Leioa, Spain.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czech Republic.
| |
Collapse
|
19
|
Doert A, Pilatus U, Zanella F, Müller WE, Eckert GP. ¹H- and ¹³C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer's disease. J Neural Transm (Vienna) 2015; 122:541-50. [PMID: 25742870 DOI: 10.1007/s00702-015-1387-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/22/2015] [Indexed: 01/17/2023]
Abstract
Biochemical alterations underlying the symptoms and pathomechanisms of Alzheimer's disease (AD) are not fully understood. However, alterations of glucose metabolism and mitochondrial dysfunction certainly play an important role. (1)H- and (13)C-NMR spectroscopy exhibits promising results in providing information about those alterations in vivo in patients and animals, especially regarding the mitochondrial tricarboxylic acid (TCA) cycle. Accordingly, transgenic mice expressing mutant human amyloid precursor protein (APP(SL))-serving as a model of neuropathological changes in AD-were examined with in vitro 1D (1)H- and 2D (1)H-(13)C-HSQC-NMR spectroscopy after oral administration of 1-(13)C-glucose and acquisition of brain material after 30 min. Perchloric acid extracts were measured using a 500 MHz spectrometer, providing more detailed information compared to in vivo spectra achievable nowadays. Area under curve (AUC) data of metabolite peaks were obtained and normalized in relation to the creatine signal, serving as internal reference. Besides confirming well-known metabolic alterations in AD like decreased N-acetylaspartate (NAA)/Creatine (Cr) ratio, new findings such as a decrease in phosphorylcholine (PC) are presented. Glutamate (Glu) and glutamine (Gln) concentrations were decreased while γ-aminobutyric acid (GABA) was elevated in Thy1-APP(SL) mice. (13)C-NMR spectroscopy revealed a shift in the Glx-2/Glx-4-ratio-where Glx represents a combined Glu/Gln-signal-towards Glx-2 in AD. These findings correlated well with the NAA/Cr-ratio. The Gln-4/Glu-4-ratio is altered in favor of Glu. Our findings suggest that glutamine synthetase (GS), which is predominantly present in glial cells may be impaired in the brain of Thy1-APP(SL) transgenic mice. Since GS is an ATP-dependent enzyme, mitochondrial dysfunction might contribute to reduced activity, which might also account for the increased metabolism of glutamate via the GABA shunt, a metabolic pathway to bypass intra-mitochondrial α-ketoglutarate-dehydrogenase, resulting in elevated GABA levels.
Collapse
Affiliation(s)
- A Doert
- Institute of Neuroradiology, Goethe-University Hospital, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
20
|
Hancock SM, Finkelstein DI, Adlard PA. Glia and zinc in ageing and Alzheimer's disease: a mechanism for cognitive decline? Front Aging Neurosci 2014; 6:137. [PMID: 25009495 PMCID: PMC4069481 DOI: 10.3389/fnagi.2014.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Normal ageing is characterized by cognitive decline across a range of neurological functions, which are further impaired in Alzheimer’s disease (AD). Recently, alterations in zinc (Zn) concentrations, particularly at the synapse, have emerged as a potential mechanism underlying the cognitive changes that occur in both ageing and AD. Zn is now accepted as a potent neuromodulator, affecting a variety of signaling pathways at the synapse that are critical to normal cognition. While the focus has principally been on the neuron: Zn interaction, there is a growing literature suggesting that glia may also play a modulatory role in maintaining both Zn ion homeostasis and the normal function of the synapse. Indeed, zinc transporters (ZnT’s) have been demonstrated in glial cells where Zn has also been shown to have a role in signaling. Furthermore, there is increasing evidence that the pathogenesis of AD critically involves glial cells (such as astrocytes), which have been reported to contribute to amyloid-beta (Aβ) neurotoxicity. This review discusses the current evidence supporting a complex interplay of glia, Zn dyshomeostasis and synaptic function in ageing and AD.
Collapse
Affiliation(s)
- Sara M Hancock
- Synaptic Neurobiology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| |
Collapse
|
21
|
Mazzone GL, Mladinic M, Nistri A. Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord. Cell Death Dis 2013; 4:e902. [PMID: 24176860 PMCID: PMC3920932 DOI: 10.1038/cddis.2013.431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The aim of the present report was to investigate whether, in the mammalian spinal cord, cell death induced by transient excitotoxic stress could trigger activation and proliferation of endogenous neuroprogenitor cells as a potential source of a lesion repair process and the underlying time course. Because it is difficult to address these issues in vivo, we used a validated model of spinal injury based on rat organotypic slice cultures that retain the fundamental tissue cytoarchitecture and replicate the main characteristics of experimental damage to the whole spinal cord. Excitotoxicity evoked by 1 h kainate application produced delayed neuronal death (40%) peaking after 1 day without further losses or destruction of white matter cells for up to 2 weeks. After 10 days, cultures released a significantly larger concentration of endogenous glutamate, suggesting functional network plasticity. Indeed, after 1 week the total number of cells had returned to untreated control level, indicating substantial cell proliferation. Activation of progenitor cells started early as they spread outside the central area, and persisted for 2 weeks. Although expression of the neuronal progenitor phenotype was observed at day 3, peaked at 1 week and tapered off at 2 weeks, very few cells matured to neurons. Astroglia precursors started proliferating later and matured at 2 weeks. These data show insult-related proliferation of endogenous spinal neuroprogenitors over a relatively brief time course, and delineate a narrow temporal window for future experimental attempts to drive neuronal maturation and for identifying the factors regulating this process.
Collapse
Affiliation(s)
- G L Mazzone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | |
Collapse
|
22
|
Rodríguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A. Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 2013; 35:15-23. [PMID: 23969179 DOI: 10.1016/j.neurobiolaging.2013.07.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 06/04/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022]
Abstract
Morphological aging of astrocytes was investigated in entorhinal cortex (EC), dentate gyrus (DG), and cornu ammonis 1 (CA1) regions of hippocampus of male SV129/C57BL6 mice of different age groups (3, 9, 18, and 24 months). Astroglial profiles were visualized by immunohistochemistry by using glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and s100β staining; these profiles were imaged using confocal or light microscopy for subsequent morphometric analysis. GFAP-positive profiles in the DG and the CA1 of the hippocampus showed progressive age-dependent hypertrophy, as indicated by an increase in surface, volume, and somata volume at 24 months of age compared with 3-month-old mice. In contrast with the hippocampal regions, aging induced a decrease in GFAP-positive astroglial profiles in the EC: the surface, volume, and cell body volume of astroglial cells at 24 months of age were decreased significantly compared with the 3-month group. The GS-positive astrocytes displayed smaller cellular surface areas at 24 months compared with 3-month-old animals in both areas of hippocampus, whereas GS-positive profiles remained unchanged in the EC of old mice. The morphometry of s100β-immunoreactive profiles revealed substantial increase in the EC, more moderate increase in the DG, and no changes in the CA1 area. Based on the morphological analysis of 3 astroglial markers, we conclude that astrocytes undergo a complex age-dependent remodeling in a brain region-specific manner.
Collapse
Affiliation(s)
- José J Rodríguez
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | | | | | | | | | | |
Collapse
|