1
|
Gopalakrishnan S, Yadav SR, Kannan NN. A role for the circadian photoreceptor CRYPTOCHROME in regulating triglyceride metabolism in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae220. [PMID: 39268728 PMCID: PMC11540332 DOI: 10.1093/g3journal/jkae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
The biological rhythms generated by the endogenous circadian clocks across the tree of life regulate numerous behavioral, metabolic, and physiological processes. Although evidence from various studies in Drosophila melanogaster indicates the importance of the core circadian clock genes in the intricate interplay between the circadian clock and metabolism, little is known about the contribution of the circadian photoreceptor/s in this process. The deep brain circadian photoreceptor CRYPTOCHROME (CRY) is essential for resetting the clock in response to light and is also highly expressed in metabolically active tissues in Drosophila. In this study, we sought to explore the possible roles played by CRY in triglyceride (TG) metabolism. We observed that the cry mutant (cry01) flies exhibited increased starvation resistance and TG levels under both 12-hour (h) light:12-h dark cycle (LD) and under constant light compared with the control w1118 flies. We also observed that cry01 flies had significantly increased food intake, glycogen concentrations, and lifespan under LD. In addition, cryptochrome seemed to affect TG levels in adult flies in response to calorie-restricted and high-fat diets. These results suggest a role for the circadian photoreceptor CRY in TG metabolism in Drosophila.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Sanjay Ramnarayan Yadav
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Li X, Yang S, Wang S, Shi Y, Dai Y, Zhang X, Liu Y, Guo Y, He J, Xiu M. Regulation and mechanism of Astragalus polysaccharide on ameliorating aging in Drosophila melanogaster. Int J Biol Macromol 2023; 234:123632. [PMID: 36801290 DOI: 10.1016/j.ijbiomac.2023.123632] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Astragalus polysaccharide (APS) is a notable bioactive component of Astragalus membranaceus and has been extensively investigated for its pharmacological activities, including antioxidant, neuroprotection, and anticancer effects. However, the beneficial effects and mechanisms of APS on anti-aging diseases remain largely unknown. Here, we utilized the classic model organism Drosophila melanogaster to investigate the beneficial effects and mechanism of APS on aging-related intestinal homeostasis imbalance, sleeping disorders, and neurodegenerative diseases. The results showed that administration of APS significantly attenuated age-associated disruption of the intestinal barrier, loss of gastrointestinal acid-base balance, reduction in intestinal length, overproliferation of the intestinal stem cells (ISCs), and sleeping disorders upon aging. Furthermore, APS supplementation delayed the onset of Alzheimer's phenotypes in Aβ42-induced Alzheimer's disease (AD) flies, including the extension of lifespan and the increase in motility, but without rescuing neurobehavioral deficits in the AD model of taupathy and Parkinson's disease (PD) model of Pink1 mutation. In addition, transcriptomics was used to dissect updated mechanisms of APS on anti-aging, such as JAK-STAT signaling, Toll signaling, and IMD signaling pathways. Taken together, these studies indicate that APS plays a beneficial role in modulating aging-related diseases, thereby as a potential natural drug to delay aging.
Collapse
Affiliation(s)
- Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Institute of Infection, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou 730000, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
3
|
MacArthur MR, Mitchell SJ. Sex differences in healthspan and lifespan responses to geroprotective dietary interventions in preclinical models. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Hwangbo DS, Kwon YJ, Iwanaszko M, Jiang P, Abbasi L, Wright N, Alli S, Hutchison AL, Dinner AR, Braun RI, Allada R. Dietary Restriction Impacts Peripheral Circadian Clock Output Important for Longevity in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522718. [PMID: 36711760 PMCID: PMC9881908 DOI: 10.1101/2023.01.04.522718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Circadian clocks may mediate lifespan extension by caloric or dietary restriction (DR). We find that the core clock transcription factor Clock is crucial for a robust longevity and fecundity response to DR in Drosophila. To identify clock-controlled mediators, we performed RNA-sequencing from abdominal fat bodies across the 24 h day after just 5 days under control or DR diets. In contrast to more chronic DR regimens, we did not detect significant changes in the rhythmic expression of core clock genes. Yet we discovered that DR induced de novo rhythmicity or increased expression of rhythmic clock output genes. Network analysis revealed that DR increased network connectivity in one module comprised of genes encoding proteasome subunits. Adult, fat body specific RNAi knockdown demonstrated that proteasome subunits contribute to DR-mediated lifespan extension. Thus, clock control of output links DR-mediated changes in rhythmic transcription to lifespan extension.
Collapse
Affiliation(s)
- Dae-Sung Hwangbo
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Yong-Jae Kwon
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marta Iwanaszko
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Peng Jiang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ladan Abbasi
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Nicholas Wright
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Sarayu Alli
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Alan L. Hutchison
- James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Rosemary I Braun
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
6
|
Chronobiotics KL001 and KS15 Extend Lifespan and Modify Circadian Rhythms of Drosophila melanogaster. Clocks Sleep 2021; 3:429-441. [PMID: 34449576 PMCID: PMC8395451 DOI: 10.3390/clockssleep3030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023] Open
Abstract
Chronobiotics are a group of drugs, which are utilized to modify circadian rhythms targeting clock-associated molecular mechanisms. The circadian clock is known as a controller of numerous processes in connection with aging. Hypothesis: KL001 and KS15 targeting CRY, affect lifespan, locomotor activity and circadian rhythm of Drosophila melanogaster. We observed a slight (2%, p < 0.001) geroprotective effect on median lifespan (5 µM solution of KL001 in 0.1% DMSO) and a 14% increase in maximum lifespan in the same group. KS15 10 µM solution extended males’ median lifespan by 8% (p < 0.05). The statistically significant positive effects of KL001 and KS15 on lifespan were not observed in female flies. KL001 5 µM solution improved locomotor activity in young male imagoes (p < 0.05), elevated morning activity peak in aged imagoes and modified robustness of their circadian rhythms, leaving the period intact. KS15 10 µM solution decreased the locomotor activity in constant darkness and minimized the number of rhythmic flies. KL001 5 µM solution improved by 9% the mean starvation resistance in male flies (p < 0.01), while median resistance was elevated by 50% (p < 0.0001). This phenomenon may suggest the presence of the mechanism associated with improvement of fat body glucose depos’ utilization in starvation conditions which is activated by dCRY binding KL001.
Collapse
|
7
|
Velingkaar N, Mezhnina V, Poe A, Kondratov RV. Two-meal caloric restriction induces 12-hour rhythms and improves glucose homeostasis. FASEB J 2021; 35:e21342. [PMID: 33543540 PMCID: PMC7898832 DOI: 10.1096/fj.202002470r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
Glucose metabolism is tightly regulated and disrupting glucose homeostasis is a hallmark of many diseases. Caloric restriction (CR), periodic fasting, and circadian rhythms are interlinked with glucose metabolism. Here, we directly investigated if CR depends on periodic fasting and circadian rhythms to improve glucose metabolism. CR was implemented as two-meals per day (2M-CR), provided at 12-hour intervals, and compared with one meal per day CR, mealtime (MT), and ad libitum (AL) feeding. The 2M-CR impacted the circadian rhythms in blood glucose, metabolic signaling, circadian clock, and glucose metabolism gene expression. 2M-CR significantly reduced around the clock blood glucose and improved glucose tolerance. Twenty-four-hour rhythms in mTOR signaling and gene expression observed under AL, MT, and CR, became 12-hour rhythms in 2M-CR. The 12-hour rhythms in behavior, gene expression, and signaling persisted in fasted mice, implicating some internal regulation. The study highlights that the reduction in caloric intake rather than meal frequency and duration of fasting is essential for metabolic reprograming and improvement in glucose metabolism and provides evidence on food-entrained molecular pacemaker, which can be uncoupled from the light-entrained circadian clock and rhythms.
Collapse
Affiliation(s)
- Nikkhil Velingkaar
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Volha Mezhnina
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Roman V Kondratov
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
8
|
Shen J, Yang P, Luo X, Li H, Xu Y, Shan J, Yang Z, Liang B. Green light extends Drosophila longevity. Exp Gerontol 2021; 147:111268. [PMID: 33539986 DOI: 10.1016/j.exger.2021.111268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
The role of visible light on longevity is incompletely understood. Here we show the effect of visible light in Drosophila melanogaster is wavelength specific. Life span was significantly extended by green light, whereas blue light reduced longevity dramatically, and minor impact was observed with red light. While oxidative stress, heat stress, or caloric restriction does not contribute to the beneficial effect of green light, our study found that the life span extension effect of green light might be mediated by microbiota or photosensitive micronutrients in food medium. In conclusion, we report that green light can extend longevity and present the potential of light as a noninvasive therapy for aging-related diseases.
Collapse
Affiliation(s)
- Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China..
| | - Peijing Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xusheng Luo
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Honglin Li
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yifan Xu
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jianying Shan
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhizhang Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Boying Liang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
9
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients 2020; 12:nu12041194. [PMID: 32344591 PMCID: PMC7230387 DOI: 10.3390/nu12041194] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Genetic and pharmacological interventions have successfully extended healthspan and lifespan in animals, but their genetic interventions are not appropriate options for human applications and pharmacological intervention needs more solid clinical evidence. Consequently, dietary manipulations are the only practical and probable strategies to promote health and longevity in humans. Caloric restriction (CR), reduction of calorie intake to a level that does not compromise overall health, has been considered as being one of the most promising dietary interventions to extend lifespan in humans. Although it is straightforward, continuous reduction of calorie or food intake is not easy to practice in real lives of humans. Recently, fasting-related interventions such as intermittent fasting (IF) and time-restricted feeding (TRF) have emerged as alternatives of CR. Here, we review the history of CR and fasting-related strategies in animal models, discuss the molecular mechanisms underlying these interventions, and propose future directions that can fill the missing gaps in the current understanding of these dietary interventions. CR and fasting appear to extend lifespan by both partially overlapping common mechanisms such as the target of rapamycin (TOR) pathway and circadian clock, and distinct independent mechanisms that remain to be discovered. We propose that a systems approach combining global transcriptomic, metabolomic, and proteomic analyses followed by genetic perturbation studies targeting multiple candidate pathways will allow us to better understand how CR and fasting interact with each other to promote longevity.
Collapse
|
11
|
Gendron CM, Chakraborty TS, Chung BY, Harvanek ZM, Holme KJ, Johnson JC, Lyu Y, Munneke AS, Pletcher SD. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu Rev Physiol 2019; 82:227-249. [PMID: 31635526 DOI: 10.1146/annurev-physiol-021119-034440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Zachary M Harvanek
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kristina J Holme
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|