1
|
Gu Q, Wang L, Xu M, Zhou W, Liu G, Tian H, Efferth T, Wang C, Fu Y. The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/ SREBP pathways in HepG2 cells and Caenorhabditis elegans. Food Funct 2025. [PMID: 40326995 DOI: 10.1039/d5fo01105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Phloretin, a natural dihydrochalcone, exhibits significant potential in modulating lipid metabolism both in vitro and in vivo. This study investigated the effects of phloretin on lipid accumulation in HepG2 cells and Caenorhabditis elegans. In HepG2 cells, phloretin reduced lipid accumulation, ROS levels, and lipid peroxidation while ameliorating mitochondrial dysfunction. It downregulated lipid synthesis genes (SREBP, FASN) and upregulated PI3K-AKT pathway genes (AKT, FOXO, MTOR). In C. elegans, phloretin alleviated lipid accumulation-induced growth and locomotor impairments, reduced lipofuscin, ROS, glucose, and triglyceride levels, and modulated amino acid and lipid metabolism pathways. Gene expression analysis revealed downregulation of sbp-1, mdt-15, fat-5, fat-6, and fat-7, and upregulation of daf-16, age-1, and skn-1. Mutant studies confirmed that phloretin's lipid-lowering effects were mediated through the IIS and sbp-1/SREBP pathways. These findings suggest phloretin is a promising candidate for regulating lipid metabolism and preventing hyperlipidemia.
Collapse
Affiliation(s)
- Qi Gu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mingyue Xu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Wanmei Zhou
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Guosheng Liu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Haiting Tian
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Chenlu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| |
Collapse
|
2
|
Viljoen SJ, Brailsford FL, Murphy DV, Hoyle FC, Jones DL, Henry DJ, Fosu-Nyarko J. Toxicity of additives present in conventional and biodegradable plastics on soil fauna: a case study of the root lesion nematode Pratylenchus neglectus. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136682. [PMID: 39612880 DOI: 10.1016/j.jhazmat.2024.136682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Plastic pollution in terrestrial environments is a growing concern, with an increasing focus on the impact of plastic additives on soil ecosystems. We evaluated the impact of additives from conventional plastics (ACP) and biodegradable plastics (ABP) on the soil nematode, Pratylenchus neglectus. The additives represented five functional classes (antioxidants, colourants, flame retardants, nucleating agents, and plasticisers). P. neglectus exhibited concentration-dependent mortality when exposed to the additives, with Tartrazine, an ABP colourant, inducing higher mortality compared to the conventional counterpart. No significant changes in the locomotory patterns of P. neglectus were observed, whereas oxidative stress significantly increased in response to all assistive treatments. Exposure to most of the additives resulted in a significant decline in nematode reproduction; ACPs generally caused more severe effects than ABPs. Our findings highlight a complexity in how plastic additives impact soil organisms and challenge the assumption that ABPs may be universally safer for ecosystems. The study emphasises the importance of conducting ecotoxicological assessments of specific ABPs on important species to inform the design of environmentally sustainable plastics. The results also suggest that P. neglectus could serve as a valuable sentinel organism for evaluating the ecological impacts of plastic pollution in soil.
Collapse
Affiliation(s)
- Samantha J Viljoen
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, WA 6150, Australia.
| | - Francesca L Brailsford
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Davey L Jones
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David J Henry
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, WA 6150, Australia
| | - John Fosu-Nyarko
- Centre for Crop and Food Innovation, Food Futures Institute, School of Agricultural Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Vermeulen I, Rodriguez-Alvarez N, François L, Viot D, Poosti F, Aronica E, Dedeurwaerdere S, Barton P, Cillero-Pastor B, Heeren RMA. Spatial omics reveals molecular changes in focal cortical dysplasia type II. Neurobiol Dis 2024; 195:106491. [PMID: 38575092 DOI: 10.1016/j.nbd.2024.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Focal cortical dysplasia (FCD) represents a group of diverse localized cortical lesions that are highly epileptogenic and occur due to abnormal brain development caused by genetic mutations, involving the mammalian target of rapamycin (mTOR). These somatic mutations lead to mosaicism in the affected brain, posing challenges to unravel the direct and indirect functional consequences of these mutations. To comprehensively characterize the impact of mTOR mutations on the brain, we employed here a multimodal approach in a preclinical mouse model of FCD type II (Rheb), focusing on spatial omics techniques to define the proteomic and lipidomic changes. Mass Spectrometry Imaging (MSI) combined with fluorescence imaging and label free proteomics, revealed insight into the brain's lipidome and proteome within the FCD type II affected region in the mouse model. MSI visualized disrupted neuronal migration and differential lipid distribution including a reduction in sulfatides in the FCD type II-affected region, which play a role in brain myelination. MSI-guided laser capture microdissection (LMD) was conducted on FCD type II and control regions, followed by label free proteomics, revealing changes in myelination pathways by oligodendrocytes. Surgical resections of FCD type IIb and postmortem human cortex were analyzed by bulk transcriptomics to unravel the interplay between genetic mutations and molecular changes in FCD type II. Our comparative analysis of protein pathways and enriched Gene Ontology pathways related to myelination in the FCD type II-affected mouse model and human FCD type IIb transcriptomics highlights the animal model's translational value. This dual approach, including mouse model proteomics and human transcriptomics strengthens our understanding of the functional consequences arising from somatic mutations in FCD type II, as well as the identification of pathways that may be used as therapeutic strategies in the future.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Liesbeth François
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Delphine Viot
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Fariba Poosti
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 3, 2103 SW Heemstede, the Netherlands
| | | | - Patrick Barton
- UCB Pharma, 216 Bath Rd, Slough, SL1 3WE Berkshire, United Kingdom
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Cell Biology-Inspired Tissue Engineering (cBITE), MERLN, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
4
|
Guo X, Xin Q, Wei P, Hua Y, Zhang Y, Su Z, She G, Yuan R. Antioxidant and anti-aging activities of Longan crude and purified polysaccharide (LP-A) in nematode Caenorhabditis elegans. Int J Biol Macromol 2024; 267:131634. [PMID: 38636747 DOI: 10.1016/j.ijbiomac.2024.131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.
Collapse
Affiliation(s)
- Xiuhuan Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Quancheng Xin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yutong Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongchun Zhang
- Beijing R & D Center of Mudanjiang Youbo Pharmaceutical Co., Ltd., Beijing 101300, China
| | - Zhaoyuqing Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruijuan Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
6
|
Zhang M, Xu Z, Shao L, Wang J, He Z, Jiang Y, Zhang Y, Wang H. D-pinitol ameliorated H 2O 2-induced oxidative damage in PC12 cells and prolonged the lifespan by IIS pathway in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109755. [PMID: 37734471 DOI: 10.1016/j.cbpc.2023.109755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
D-pinitol (DP) has been extensively regarded as the main active component of legumes for anti-aging. In this study, we intended to explore the anti-aging mechanism of DP, utilizing computer modeling techniques. The results demonstrated that DP significantly delayed H2O2-induced cellular senescence. Model PC12 cells treated with DP exhibited increased cell viability, increased antioxidant enzyme activity (SOD, CAT), and reduced ROS and MDA levels. Furthermore, DP was discovered to have a positive effect on healthy longevity. In C. elegans, DP treatment enhanced lifespan, stress capacity, antioxidant capacity (T-SOD/CAT/GSH-Px/MDA/ROS), and altered aging-related indicators of lipofuscin accumulation, pharyngeal pump rate, motility, and reproduction. Moreover, DP could reduce the toxicity Aβ in transgenic C. elegans CL4176, CL2355, and CL2331. Further mechanistic studies indicated DP increased transcription factor (daf-16, skn-1, hsf-1) expression of insulin/insulin-like growth factor-1 signaling (IIS) pathway. As expected, DP also extended the downstream target genes of the three transcription factors (sod-3, ctl-1, ctl-2, gst-4, hsp-16.1, and hsp-16.2). Further mutant lifespan experiments, network pharmacology, and molecular docking revealed that DP might be life-extending through the IIS pathway. DP deserves extensive investigation and development as a potential anti-aging drug in the future.
Collapse
Affiliation(s)
- Miaosi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Zhe Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Liangyong Shao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner Mongolia Bayannur, China
| | - Zouyan He
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yumei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
7
|
Wu Y, Tan X, Shi X, Han P, Liu H. Combined Effects of Micro- and Nanoplastics at the Predicted Environmental Concentration on Functional State of Intestinal Barrier in Caenorhabditis elegans. TOXICS 2023; 11:653. [PMID: 37624159 PMCID: PMC10459583 DOI: 10.3390/toxics11080653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 μg/L) and PS-500 (1 μg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 μg/L) or PS-500 (1 μg/L). Additionally, coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
Collapse
Affiliation(s)
| | | | | | | | - Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Wang Y, Shi J, Liu K, Wang Y, Xu Y, Liu Y. Metabolomics and gene expression levels reveal the positive effects of teaseed oil on lifespan and aging process in Caenorhabditis elegans. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Cui X, Zhang B, Li Z, Li C, Li J. Zhuyeqing liquor promotes longevity through enhancing stress resistance via regulation of SKN-1 and HSF-1 transcription factors in Caenorhabditis elegans. Exp Gerontol 2023; 174:112131. [PMID: 36822487 DOI: 10.1016/j.exger.2023.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Zhuyeqing liquor (ZYQL) is well-known traditional functional liquor in China that contains twelve crude drugs. Studies have shown that ZYQL has many beneficial effects, but its anti-aging effect has not been reported. Here, we found that ZYQL had excellent antioxidant activity in vitro. In C. elegans, ZYQL could significantly extend the lifespan, and decreased aging related phenotype including accumulation of lipofuscin and the decrease of food intake and motility. Further, ZYQL significantly reduced ROS level and enhanced the antioxidant defense in C. elegans. ZYQL increased transcriptional activity of transcription factors HSF-1 and SKN-1, and ZYQL-mediated longevity was dependent on these factors. Taken together, the data suggested that ZYQL enhanced the transcriptional activity of transcription factors HSF-1 and SKN-1, which in turn increased oxidative/heat stress resistance to exert its anti-aging effect in C. elegans. Our results provide new insights into the beneficial effects and underlying mechanisms of ZYQL, which might be useful for further developing ZYQL into health or anti-aging beverages.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China.
| | - Bairui Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China
| | - Zhe Li
- School of Life Science, Shanxi University, Taiyuan 030006, PR China.
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, PR China.
| | - Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
10
|
Lonicera japonica polysaccharides improve longevity and fitness of Caenorhabditis elegans by activating DAF-16. Int J Biol Macromol 2023; 229:81-91. [PMID: 36586650 DOI: 10.1016/j.ijbiomac.2022.12.289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide is one of the main active ingredients in Lonicera japonica Thunb. (L. japonica). In this study, we examined the anti-aging activities of L.japonica polysaccharides (LJPs) and further explored the mechanisms. Polysaccharides from L.japonica including the crude LJP (CLJP) and the purified fraction (LJP-2-1) were characterized. The molecular weights of CLJP and LJP-2-1 were 1450 kDa and 1280 kDa, respectively. Meanwhile, CLJP was mainly composed of galacturonic acid (23.57 %), galactose (23.45 %) and arabinose (23.45 %). LJP-2-1 was mainly composed of galacturonic acid (51.25 %) and arabinose (22.89 %). In Caenorhabditis elegans (C. elegans), LJPs maximally prolonged mean lifespan by 13.97 %, promoted fitness with increased motility by 40.92 % and pharyngeal pumping by 25.72 %, and decreased lipofuscin accumulation by 38.9 % with intact body length and fecundity. Moreover, CLJP extended the mean lifespan of nematodes under oxidative and heat stress by 16.76 % and 14.05 % respectively by activating stress-related genes and the antioxidant system. Further, CLJP required DAF-16 to prolong the lifespan of nematodes. CLJP upregulated the expression of daf-16 and its targeted downstream genes, including sod-3, gst-4 and hsp-16.2. Moreover, nuclear accumulation of DAF-16 was promoted upon CLJP treatment. Together, our data uncover the role of LJPs in extending lifespan and healthspan through DAF-16.
Collapse
|
11
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
12
|
Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology 2022; 23:541-557. [PMID: 36048312 DOI: 10.1007/s10522-022-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.
Collapse
|
13
|
Navarro-Hortal MD, Romero-Márquez JM, Osta S, Jiménez-Trigo V, Muñoz-Ollero P, Varela-López A. Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases 2022; 10:diseases10020028. [PMID: 35645249 PMCID: PMC9149938 DOI: 10.3390/diseases10020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-dependent, progressive disorder affecting millions of people. Currently, the therapeutics for AD only treat the symptoms. Although they have been used to discover new products of interest for this disease, mammalian models used to investigate the molecular determinants of this disease are often prohibitively expensive, time-consuming and very complex. On the other hand, cell cultures lack the organism complexity involved in AD. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for the investigation of the pathophysiology of human AD. Numerous models of both Tau- and Aβ-induced toxicity, the two prime components observed to correlate with AD pathology and the ease of performing RNA interference for any gene in the C. elegans genome, allow for the identification of multiple therapeutic targets. The effects of many natural products in main AD hallmarks using these models suggest promising health-promoting effects. However, the way in which they exert such effects is not entirely clear. One of the reasons is that various possible therapeutic targets have not been evaluated in many studies. The present review aims to explore shared therapeutical targets and the potential of each of them for AD treatment or prevention.
Collapse
|
14
|
Del Giudice L, Alifano P, Calcagnile M, Di Schiavi E, Bertapelle C, Aletta M, Pontieri P. Mitochondrial ribosomal protein genes connected with Alzheimer's and tellurite toxicity. Mitochondrion 2022; 64:45-58. [PMID: 35218961 DOI: 10.1016/j.mito.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S.cerevisiae) and the nematode Caenorhabditis elegans (C.elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | | | | | | | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| |
Collapse
|
15
|
Regulation and functions of membrane lipids: Insights from Caenorhabditis elegans. BBA ADVANCES 2022; 2:100043. [PMID: 37082601 PMCID: PMC10074978 DOI: 10.1016/j.bbadva.2022.100043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
The Caenorhabditis elegans plasma membrane is composed of glycerophospholipids and sphingolipids with a small cholesterol. The C. elegans obtain the majority of the membrane lipids by modifying fatty acids present in the bacterial diet. The metabolic pathways of membrane lipid biosynthesis are well conserved across the animal kingdom. In C. elegans CDP-DAG and Kennedy pathway produce glycerophospholipids. Meanwhile, the sphingolipids are synthesized through a different pathway. They have evolved remarkably diverse mechanisms to maintain membrane lipid homeostasis. For instance, the lipid bilayer stress operates to accomplish homeostasis during any perturbance in the lipid composition. Meanwhile, the PAQR-2/IGLR-2 complex works with FLD-1 to balance unsaturated to saturated fatty acids to maintain membrane fluidity. The loss of membrane lipid homeostasis is observed in many human genetic and metabolic disorders. Since C. elegans conserved such genes and pathways, it can be used as a model organism.
Collapse
|
16
|
Wang Y, Shi J, Jiang F, Xu YJ, Liu Y. Metabolomics reveals the impact of saturation of dietary lipids on aging and longevity of C. elegans. Mol Omics 2022; 18:430-438. [DOI: 10.1039/d2mo00041e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saturation differences in dietary lipids modify their digestive and absorption profiles, endpoints that may influence the nutrition and health. This study tests the hypothesis that dietary with elevated unsaturated fats...
Collapse
|
17
|
Xiao X, Zhou Y, Tan C, Bai J, Zhu Y, Zhang J, Zhou X, Zhao Y. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway. Int J Biol Macromol 2021; 193:1021-1031. [PMID: 34798183 DOI: 10.1016/j.ijbiomac.2021.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
β-glucan is an important functional active component with relatively high content in barley. It is reported to possess various biological activities, including anti-oxidative stress, but its mechanism of action remains obscure. In the current study, C. elegans was used as an in vivo animal model to explore its anti-oxidative stress mechanism. We found that both RBG (raw barley β-glucan) and FBG (fermented barley β-glucan) could significantly reduce the ROS level in C. elegans under oxidative emergency conditions. In addition, both FBG and RBG had positive effects on SOD and CAT enzyme activity, and FBG treatment obviously reduced the MDA content in nematodes under oxidative stress. Moreover, FBG and RBG pretreatment could extend the median lifespan of C. elegans under oxidative stress. The CB1370 and CF1038 mutants further confirmed that daf-2 and daf-16 were necessary for FBG or RBG to participate in anti-oxidative stress, and the RT-PCR results also evidenced that β-glucans resist oxidative stress in C. elegans partially through the daf-2/daf-16 pathway. In summary, barley β-glucan has high potential to defense oxidative stress as a natural polysaccharide.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Dai Y, Tang H, Pang S. The Crucial Roles of Phospholipids in Aging and Lifespan Regulation. Front Physiol 2021; 12:775648. [PMID: 34887779 PMCID: PMC8650052 DOI: 10.3389/fphys.2021.775648] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Phospholipids are major membrane lipids that consist of lipid bilayers. This basic cellular structure acts as a barrier to protect the cell against various environmental insults and more importantly, enables multiple cellular processes to occur in subcellular compartments. Numerous studies have linked the complexity of membrane lipids to signal transductions, organelle functions, as well as physiological processes, and human diseases. Recently, crucial roles for membrane lipids in the aging process are beginning to emerge. In this study, we summarized current advances in our understanding of the relationship between membrane lipids and aging with an emphasis on phospholipid species. We surveyed how major phospholipid species change with age in different organisms and tissues, and some common patterns of membrane lipid change during aging were proposed. Further, the functions of different phospholipid molecules in regulating healthspan and lifespan, as well as their potential mechanisms of action, were also discussed.
Collapse
Affiliation(s)
- Yucan Dai
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Franco-Juárez B, Gómez-Manzo S, Hernández-Ochoa B, Cárdenas-Rodríguez N, Arreguin-Espinosa R, Pérez de la Cruz V, Ortega-Cuellar D. Effects of High Dietary Carbohydrate and Lipid Intake on the Lifespan of C. elegans. Cells 2021; 10:cells10092359. [PMID: 34572007 PMCID: PMC8465757 DOI: 10.3390/cells10092359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Health and lifespan are influenced by dietary nutrients, whose balance is dependent on the supply or demand of each organism. Many studies have shown that an increased carbohydrate–lipid intake plays a critical role in metabolic dysregulation, which impacts longevity. Caenorhabditis elegans has been successfully used as an in vivo model to study the effects of several factors, such as genetic, environmental, diet, and lifestyle factors, on the molecular mechanisms that have been linked to healthspan, lifespan, and the aging process. There is evidence showing the causative effects of high glucose on lifespan in different diabetic models; however, the precise biological mechanisms affected by dietary nutrients, specifically carbohydrates and lipids, as well as their links with lifespan and longevity, remain unknown. Here, we provide an overview of the deleterious effects caused by high-carbohydrate and high-lipid diets, as well as the molecular signals that affect the lifespan of C. elegans; thus, understanding the detailed molecular mechanisms of high-glucose- and lipid-induced changes in whole organisms would allow the targeting of key regulatory factors to ameliorate metabolic disorders and age-related diseases.
Collapse
Affiliation(s)
- Berenice Franco-Juárez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Ciudad de México 04510, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico
- Correspondence: ; Tel.: +52-55-1084-0900
| |
Collapse
|
20
|
Liu X, Liu H, Chen Z, Xiao J, Cao Y. DAF-16 acts as the "hub" of astaxanthin's anti-aging mechanism to improve aging-related physiological functions in Caenorhabditis elegans. Food Funct 2021; 12:9098-9110. [PMID: 34397058 DOI: 10.1039/d1fo01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Astaxanthin (AX) is a xanthophyll carotenoid that can effectively inhibit the production of peroxides and thereby protect the body from oxidative damage. In recent years, AX had been shown to have anti-aging properties, both in vivo and in vitro. However, the underlying mechanisms by which AX regulates senescence related proteins and signaling pathways remain unclear. Therefore, we used Caenorhabditis elegans (C. elegans) model binding proteomics to reveal AX anti-aging activity and its molecular mechanism. Our results suggest that AX promotes the health and lifespan of C. elegans by improving mobility, reducing the accumulation of age pigments, and increasing resistance to heat stress. In terms of the underlying mechanism, AX helps prolong the life of worms by regulating AGE-1 in the insulin signaling pathway, promoting the transport of DAF-16 into the nucleus and then up-regulating the expression level of DAF-16's downstream proteins (such as superoxide dismutase [Mn] 2 (SOD-3), heat shock proteins (HSPs), glutathione s-transferase (GST-4), etc.). Furthermore, AX may be a relevant response target for activation of dietary restriction pathways in vivo as a dietary restriction mimic. Meanwhile, proteomics data confirmed that there were 15 proteins enriched in the longevity regulation pathway. AX mainly regulates oxidative stress and the aging process by modulating the insulin signaling pathway around DAF-16 as the "hub". In addition to the insulin signaling pathway, other pathways including dietary restriction, AMP-activated protein kinase (AMPK), and mammal target of rapamycin (mTOR) are also dependent on DAF-16. These findings expand and deepen our knowledge of the underlying mechanism by which AX extends the lifespan of C. elegans.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
21
|
Supplementation with phosphatidylethanolamine confers anti-oxidant and anti-aging effects via hormesis and reduced insulin/IGF-1-like signaling in C. elegans. Mech Ageing Dev 2021; 197:111498. [PMID: 33974957 DOI: 10.1016/j.mad.2021.111498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
Phosphatidylethanolamine is a major component of phospholipids with both structural and metabolic functions in cells. Previous studies have revealed that phosphatidylethanolamine can modulate autophagy with a protective effect against age-related diseases. We examined the effect of dietary supplementation with phosphatidylethanolamine on stress response and aging in Caenorhabditis elegans. Phosphatidylethanolamine increased resistance to oxidative stress without effect on heat stress or ultraviolet irradiation. Both mean and maximum lifespans were significantly increased by phosphatidylethanolamine while fertility was reduced as a trade-off. Age-related decline of muscle function was delayed in animals treated with phosphatidylethanolamine. Supplementation with phosphatidylethanolamine suppressed toxic effect of amyloid β and high-glucose diet. Increased ROS levels and induction of stress-responsive genes after dietary supplementation with phosphatidylethanolamine suggest that anti-oxidative stress and anti-aging effects of phosphatidylethanolamine might be though hormesis. Genetic analysis using long-lived mutants and knockdown by RNAi revealed that the lifespan-extending effect of phosphatidylethanolamine overlapped with that of reduced insulin/IGF-1-like signaling and required DAF-16, a downstream transcription factor known to regulate the expression of many stress-responsive genes. These findings indicate that phosphatidylethanolamine has anti-oxidative stress and anti-aging activities with its underlying mechanisms involving hormesis and reduced insulin/IGF-1-like signaling in C. elegans.
Collapse
|
22
|
Mehdi MM, Solanki P, Singh P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Arch Gerontol Geriatr 2021; 95:104413. [PMID: 33845417 DOI: 10.1016/j.archger.2021.104413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Aging, in a large measure, has long been defined as the resultant of oxidative stress acting on the cells. The cellular machinery eventually malfunctions at the basic level by the damage from the processes of oxidation and the system starts slowing down because of intrinsic eroding. To understand the initial destruction at the cellular level spreading outward to affect tissues, organs and the organism, the relationship between molecular damage and oxidative stress is required to understand. Retarding the aging process is a matter of cumulatively decreasing the rate of oxidative damage to the cellular machinery. Along with the genetic reasons, the decrease of oxidative stress is somehow a matter of lifestyle and importantly of diet. In the current review, the theories of aging and the understanding of various levels of molecular damage by oxidative stress have been emphasized. A broader understanding of mechanisms of aging have been elaborated in terms of effects of oxidative at molecular, mitochondrial, cellular and organ levels. The antioxidants supplementation, hormesis and calorie restriction as the prominent anti-aging strategies have also been discussed. The relevance and the efficacy of the antiaging strategies at system level have also been presented.
Collapse
Affiliation(s)
- Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bio-engineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Preeti Solanki
- Multidisciplinary Research Unit, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, 124001, Haryana, India
| | - Prabhakar Singh
- Department of Biochemistry, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| |
Collapse
|
23
|
Liu H, Kwak JI, Wang D, An YJ. Multigenerational effects of polyethylene terephthalate microfibers in Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2021; 193:110569. [PMID: 33275924 DOI: 10.1016/j.envres.2020.110569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Microfibers (MFs) have recently become an increasingly prevalent pollutant in ecosystems and pose a direct threat to organisms and an indirect threat via adsorption of other pollutants. Here, we used Caenorhabditis elegans to study multigenerational effects of polyethylene terephthalate (PET) MFs (diameter 17.4 μm) by observing the maternal generation (P0) to the seventh offspring generation (F7) with continuous MF exposure. Exposure to 250-μm PET MFs decreased locomotion behavior and induced intestinal reactive oxygen species (ROS) in the P0 generation compared with other PET MF sizes. Moreover, no notably negative effects on survival were observed in any generation during continuous exposure to 250-μm PET MFs. However, the reproduction rate clearly decreased in the F2 and F3 generations but gradually recovered in the F4-F7 generations. Developmental abnormalities showed a close relationship with body length. Although some recovery was confirmed, there were significant decreases in body length in the F2-F5 generations. Interestingly, growth inhibition was also observed in the F6 generation without MF exposure. ROS production and dermal damage in the P0-F5 generations might have resulted in the toxicological responses. To the best of our knowledge, this is the first study to provide evidence of multigenerational toxicity of MFs in C. elegans.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|