Adonyeva NV, Menshanov PN, Gruntenko N. A Link between Atmospheric Pressure and Fertility of
Drosophila Laboratory Strains.
INSECTS 2021;
12:insects12100947. [PMID:
34680716 PMCID:
PMC8538592 DOI:
10.3390/insects12100947]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary
The researchers usually keep insects under study under thoroughly controlled conditions. However, sometimes they encounter a situation where the data they obtained under such conditions demonstrate an obvious side effect of some unaccounted factor. Here we provide evidence that changes in atmospheric pressure could be responsible for some such cases.
Abstract
Standardization of conditions under which insects are kept is of great importance when studying their physiology and researchers do their best to maintain it. Nevertheless, sometimes an obvious side effect of some unaccounted factor affecting insects’ reproduction can be revealed even under thoroughly controlled laboratory conditions. We faced such a phenomenon when studying the fertility level in two wild type Drosophila melanogaster strains. For fertility analysis, 50 newly emerged females and 50 males of each strain under study were transferred to fresh medium daily within 10 days. We found out that fertility of both strains was stable on days 2–10 after the oviposition onset in one experiment, while in another one it was significantly decreased during days 5–10. When compared to publicly available meteorological data, these changes in the fertility level demonstrated a strong association with one weather factor: barometric pressure. Thus, we conclude that changes in atmospheric pressure can be considered a factor affecting insects reproduction and discuss a possible mechanism of their influence on fertility.
Collapse