1
|
Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Leymus (Triticodae, Poaceae). Genes (Basel) 2022; 13:genes13081425. [PMID: 36011336 PMCID: PMC9408388 DOI: 10.3390/genes13081425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Leymus is a perennial genus that belongs to the tribe Triticeae (Poaceae) which has an adaptive capacity to ecological conditions and strong resistance to cold, drought, and salinity. Most Leymus species are fine herbs that can be used for agriculture, conservation, and landscaping. Due to confusion taxonomy within genera, the complete chloroplast (cp) genome of 13 Leymus species was sequenced, assembled, and compared with those of three other previously published Leymus species (Leymus condensatus, Leymus angustus, and Leymus mollis) to clarify the issue. Overall, the whole cp genome size ranged between 135,057 (L. condensatus) and 136,906 bp (Leymus coreanus) and showed a typical quadripartite structure. All studied species had 129 genes, including 83 protein-coding genes, 38 transfer RNAs, and 8 ribosomal RNAs. In total, 800 tandem repeats and 707 SSR loci were detected, most of which were distributed in the large single-copy region, followed by the inverted repeat (IR) and small single-copy regions. The sequence identity of all sequences was highly similar, especially concerning the protein-coding and IR regions; in particular, the protein-coding regions were significantly similar to those in the IR regions, regardless of small sequence differences in the whole cp genome. Moreover, the coding regions were more conserved than the non-coding regions. Comparisons of the IR boundaries showed that IR contraction and expansion events were reflected in different locations of rpl22, rps19, ndhH, and psbA genes. The close phylogenetic relationship of Leymus and Psathyrostachys indicated that Psathyrostachys possibly is the donor of the Ns genome sequence identified in Leymus. Altogether, the complete cp genome sequence of Leymus will lay a solid foundation for future population genetics and phylogeography studies, as well as for the analysis of the evolution of economically valuable plants.
Collapse
|
2
|
Yang Y, Fan X, Wang L, Zhang HQ, Sha LN, Wang Y, Kang HY, Zeng J, Yu XF, Zhou YH. Phylogeny and maternal donors of Elytrigia Desv. sensu lato (Triticeae; Poaceae) inferred from nuclear internal-transcribed spacer and trnL-F sequences. BMC PLANT BIOLOGY 2017; 17:207. [PMID: 29157213 PMCID: PMC5697114 DOI: 10.1186/s12870-017-1163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Elytrigia Desv. is a genus with a varied array of morphology, cytology, ecology, and distribution in Triticeae. Classification and systematic position of Elytrigia remain controversial. We used nuclear internal-transcribed spacer (nrITS) sequences and chloroplast trnL-F region to study the relationships of phylogenetic and maternal genome donor of Elytrigia Desv. sensu lato. RESULTS (1) E, F, P, St, and W genomes bear close relationship with one another and are distant from H and Ns genomes. Ee and Eb are homoeologous. (2) In ESt genome species, E genome is the origin of diploid Elytrigia species with E genome, St genome is the origin of Pseudoroegneria. (3) Diploid species Et. elongata were differentiated. (4) Et. stipifolia and Et. varnensis sequences are diverse based on nrITS data. (5) Et. lolioides contains St and H genomes and belongs to Elymus s. l. (6) E genome diploid species in Elytrigia serve as maternal donors of E genome for Et. nodosa (PI547344), Et. farcta, Et. pontica, Et. pycnantha, Et. scirpea, and Et. scythica. At least two species act as maternal donor of allopolyploids (ESt and EStP genomes). CONCLUSIONS Our results suggested that Elytrigia s. l. species contain different genomes, which should be divided into different genera. However, the genomes of Elytrigia species had close relationships with one another. Diploid species were differentiated, because of introgression and different geographical sources. The results also suggested that the same species and the same genomes of different species have different maternal donor. Further study of molecular biology and cytology could facilitate the evaluation of our results of phylogenetic in a more specific and accurate way.
Collapse
Affiliation(s)
- Yan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009 Sichuan People’s Republic of China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
3
|
Sha LN, Fan X, Li J, Liao JQ, Zeng J, Wang Y, Kang HY, Zhang HQ, Zheng YL, Zhou YH. Contrasting evolutionary patterns of multiple loci uncover new aspects in the genome origin and evolutionary history of Leymus (Triticeae; Poaceae). Mol Phylogenet Evol 2017; 114:175-188. [PMID: 28533082 DOI: 10.1016/j.ympev.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022]
Abstract
Leymus Hochst. (Triticeae: Poaceae), a group of allopolyploid species with the NsXm genomes, is a perennial genus with diversity in morphology, cytology, ecology, and distribution in the Triticeae. To investigate the genome origin and evolutionary history of Leymus, three unlinked low-copy nuclear genes (Acc1, Pgk1, and GBSSI) and three chloroplast regions (trnL-F, matK, and rbcL) of 32 Leymus species were analyzed with those of 36 diploid species representing 18 basic genomes in the Triticeae. The phylogenetic relationships were reconstructed using Bayesian inference, Maximum parsimony, and NeighborNet methods. A time-calibrated phylogeny was generated to estimate the evolutionary history of Leymus. The results suggest that reticulate evolution has occurred in Leymus species, with several distinct progenitors contributing to the Leymus. The molecular data in resolution of the Xm-genome lineage resulted in two apparently contradictory results, with one placing the Xm-genome lineage as closely related to the P/F genome and the other splitting the Xm-genome lineage as sister to the Ns-genome donor. Our results suggested that (1) the Ns genome of Leymus was donated by Psathyrostachys, and additional Ns-containing alleles may be introgressed into some Leymus polyploids by recurrent hybridization; (2) The phylogenetic incongruence regarding the resolution of the Xm-genome lineage suggested that the Xm genome of Leymus was closely related to the P genome of Agropyron; (3) Both Ns- and Xm-genome lineages served as the maternal donor during the speciation of Leymus species; (4) The Pseudoroegneria, Lophopyrum and Australopyrum genomes contributed to some Leymus species.
Collapse
Affiliation(s)
- Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, Sichuan, China
| | - Jin-Qiu Liao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
4
|
Li YY, Lei YX, Chai GH, Gao G, Deng JB, Zhang Y, Tong SS, Ding CB, Zhang L, Zhou YH, Yang RW. Phylogenetic analysis of Leymus (Poaceae: Triticeae) based on Random Amplified Polymorphic DNA. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Phylogenetic relationships between Leymus and related diploid Triticeae species revealed by ISSR markers. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0395-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Fan X, Liu J, Sha LN, Sun GL, Hu ZQ, Zeng J, Kang HY, Zhang HQ, Wang Y, Wang XL, Zhang L, Ding CB, Yang RW, Zheng YL, Zhou YH. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae). Mol Phylogenet Evol 2014; 77:296-306. [PMID: 24780748 DOI: 10.1016/j.ympev.2014.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 11/26/2022]
Abstract
Ribosomal ITS polymorphism and its ancestral genome origin of polyploid Leymus were examined to infer the evolutionary outcome of rDNA gene following allopolyploid speciation and to elucidate the geographic pattern of ITS variation. The results demonstrated that different polyploids have experienced varying fates, including maintenance or homogenization of divergent arrays, occurrence of chimeric repeats and potential pseudogenes. Our data suggested that (1) the Ns, P/F, and St genomic types in Leymus were originated from Psathyrostachys, Agropyron/Eremopyrum, and Pseudoroegneria, respectively; (2) the occurrence of a higher proportion of Leymus species with predominant uniparental rDNA type might associate with the segmental allopolyploid origin, nucleolar dominance of alloploids, and rapid radiation of Leymus; (3) maintenance of multiple parental ITS types in allopolyploid might result from long generation times associated to vegetative multiplication, number and chromosomal location of ribosomal loci and/or recurrent hybridization; (4) the rDNA genealogical structure of Leymus species might associate with the geographic origins; and (5) ITS sequence clade shared by Leymus species from Central Asia, North America, and Nordic might be an outcome of ancestral ITS homogenization. Our results shed new light on understanding evolutionary outcomes of rDNA following allopolyploid speciation and geographic isolation.
Collapse
Affiliation(s)
- Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Jing Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Gen-Lou Sun
- Biology Department, Saint Mary's University, Halifax NS B3H 3C3, Canada
| | - Zhi-Qin Hu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xiao-Li Wang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Li Zhang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Chun-Bang Ding
- College of Life Sciences, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Rui-Wu Yang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
7
|
Pang Y, Chen X, Zhao J, Du W, Cheng X, Wu J, Li Y, Wang L, Wang J, Yang Q. Molecular cytogenetic characterization of a wheat - Leymus mollis 3D(3Ns) substitution line with resistance to leaf rust. J Genet Genomics 2013; 41:205-14. [PMID: 24780618 DOI: 10.1016/j.jgg.2013.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022]
Abstract
Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many potentially valuable traits that could be transferred to common wheat during breeding programs. In this study, the karyotypic constitution of a wheat - L. mollis 3D(3Ns#1) disomic substitution line isolated from the F5 progeny of octoploid Tritileymus M842-16 × Triticum durum cv. D4286, which was designated as 10DM57, was determined using genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH), SSR markers, and EST-STS markers. Screening of mitosis and meiosis showed that 10DM57 had a chromosome karyotype of 2n = 42 = 21II. GISH indicated that 10DM57 was a line with 40 chromosomes from wheat and two of the Ns chromosomes from L. mollis, which formed a ring bivalent in pollen mother cells at metaphase I. FISH analysis showed that the chromosome 3D may be replaced by 3Ns#1 in 10DM57. DNA markers, including SSR and EST-STS primers, showed that the pair of wheat chromosome 3D in 10DM57 was substituted by the pair of chromosome 3Ns#1 from L. mollis. Evaluation of the agronomic traits showed that, compared with its common wheat relative 7182, 10DM57 was resistant to leaf rust while the spike length and number of spikes per plant were improved significantly, which correlated with a higher wheat yield. The new germplasm, 10DM57, could be exploited as an intermediate material in wheat genetic and breeding programs.
Collapse
Affiliation(s)
- Yuhui Pang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xinhong Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Wanli Du
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xueni Cheng
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jun Wu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yanli Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Liangming Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qunhui Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Liao JQ, Ross L, Fan X, Sha LN, Kang HY, Zhang HQ, Wang Y, Liu J, Wang XL, Yu XF, Yang RW, Ding CB, Zhang L, Zhou YH. Phylogeny and maternal donors of the tetraploid species with St genome (Poaceae: Triticeae) inferred from CoxII and ITS sequences. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chen S, Huang X, Yan X, Liang Y, Wang Y, Li X, Peng X, Ma X, Zhang L, Cai Y, Ma T, Cheng L, Qi D, Zheng H, Yang X, Li X, Liu G. Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe. PLoS One 2013; 8:e67974. [PMID: 23861841 PMCID: PMC3701641 DOI: 10.1371/journal.pone.0067974] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. RESULTS The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. CONCLUSIONS This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.
Collapse
Affiliation(s)
- Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- * E-mail: (SC); (XL); (GL)
| | - Xin Huang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueqing Yan
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Ye Liang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, P. R. China
| | - Xiaofeng Li
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xingyong Ma
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Lexin Zhang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Yueyue Cai
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Tian Ma
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, P. R. China
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Graduate Schoo1 of the Chinese Academy of Sciences, Beijing, P. R. China
- * E-mail: (SC); (XL); (GL)
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- * E-mail: (SC); (XL); (GL)
| |
Collapse
|
10
|
Sequence variation in ITS spacers and 5.8S rDNA and relationship of E, St, P, Ns, Xm, and H genomes in the genera of Agropyron, Elytrigia, Leymus, Pascopyrum, Psathyrostachys, and Hordeum. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Sequence Variation and Secondary Structure Analysis of the First Ribosomal Internal Transcribed Spacer (ITS-1) Between Cyprinus carpio carpio and C. carpio haematopterus. Biochem Genet 2010; 49:20-4. [DOI: 10.1007/s10528-010-9381-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/03/2010] [Indexed: 11/26/2022]
|
12
|
Fan X, Sha LN, Yang RW, Zhang HQ, Kang HY, Ding CB, Zhang L, Zheng YL, Zhou YH. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol 2009; 9:247. [PMID: 19814813 PMCID: PMC2770499 DOI: 10.1186/1471-2148-9-247] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 10/08/2009] [Indexed: 11/28/2022] Open
Abstract
Background Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene. Results Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2) Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3) the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4) the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5) North America Leymus species might originate from colonization via the Bering land bridge; (6) Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA. Conclusion Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our understanding of the origin of Xm genome, the polyploidization events and evolutionary history of Leymus that could account for the rich diversity and ecological adaptation of Leymus species.
Collapse
Affiliation(s)
- Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|