1
|
Genetic Diversity among Selected Medicago sativa Cultivars Using Inter-Retrotransposon-Amplified Polymorphism, Chloroplast DNA Barcodes and Morpho-Agronomic Trait Analyses. PLANTS 2020; 9:plants9080995. [PMID: 32764359 PMCID: PMC7464242 DOI: 10.3390/plants9080995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Alfalfa (Medicago sativa L.) is a major forage crop of family Fabaceae and is frequently cultivated in Egypt. The present study is concerned with the genetic discrimination of fifteen alfalfa cultivars from three different countries (Egypt, Australia, and USA) using two molecular approaches: inter-retrotransposon-amplified polymorphism (IRAP) markers and two chloroplast DNA barcodes matK and the trnH in addition to the analysis of fifteen morpho-agronomic traits. The genetic relatedness, based on analysis of IRAP marker polymorphism and produced using eleven primers by clustering via principal component analysis (PCA) and multivariate heatmap biostatistical methods differentiated the two Egyptian cultivars EGY1-Ismailia1 and EGY2-Nubaria1 from the three Australian and seven American cultivars, with some distinction of the cv. USA6-SW9720 and cv. AUS4-SuperFast. The results were also supported by the sequence analysis of the matK and the trnH genes on the genetic relatedness between eight cultivars. Moreover, it might be suggested that breeding lines from M. sativa cultivars may provide novel insights and a better understanding of the domestication of M. sativa genetic diversity. The classification of the eight cultivars, as revealed by morpho-agronomic traits, confirmed the close genetic relationship between the two Egyptian cultivars and indicated some resemblance between them and the AUS2-Siri Nafa, whereas the two American cultivars, USA1-Super supreme and USA4-Cuf101, were clearly isolated from a cluster of other three cultivars USA7-SW9628, USA8-Magna901, and USA9-Perfect. The results are useful sources of genetic information for future breeding programs in crop development and open new possibilities of producing M. sativa lines harboring high forage quality, productivity, and resistance to biotic and abiotic stresses.
Collapse
|
2
|
Bhat RS, Shirasawa K, Monden Y, Yamashita H, Tahara M. Developing Transposable Element Marker System for Molecular Breeding. Methods Mol Biol 2020; 2107:233-251. [PMID: 31893450 DOI: 10.1007/978-1-0716-0235-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transposable element (TE) marker system was developed considering the useful properties of the transposable elements such as their large number in the animal and plant genomes, high rate of insertion polymorphism, and ease of detection. Various methods have been employed for developing a large number of TE markers in several crop plants for genomics studies. Here we describe some of these methods including the recent whole genome search. We also review the application of TE markers in molecular breeding.
Collapse
Affiliation(s)
- R S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka, India.
| | - K Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Y Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - H Yamashita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - M Tahara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Maneesha, Upadhyaya KC. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers. J Genet 2017; 96:551-561. [PMID: 28947703 DOI: 10.1007/s12041-017-0802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.
Collapse
Affiliation(s)
- Maneesha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | |
Collapse
|
4
|
Abdollahi Mandoulakani B, Nasri S, Dashchi S, Arzhang S, Bernousi I, Abbasi Holasou H. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines. C R Biol 2017; 340:307-313. [PMID: 28619368 DOI: 10.1016/j.crvi.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike-1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs.
Collapse
Affiliation(s)
- Babak Abdollahi Mandoulakani
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran; Department of Agricultural Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Shilan Nasri
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sahar Dashchi
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Sorour Arzhang
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Iraj Bernousi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran; Department of Agricultural Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Hossein Abbasi Holasou
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tabriz University, Tabriz, Iran
| |
Collapse
|
5
|
Cakmak B, Marakli S, Gozukirmizi N. Sukkularetrotransposon movements in the human genome. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1316684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Abbasi Holasou H, Abdollahi Mandoulakani B, Jafari M, Bernousi I. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from southern Italy. Mol Biotechnol 2015; 56:1011-20. [PMID: 24973024 DOI: 10.1007/s12033-014-9780-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Native grapevines are the quintessential elements of Southern Italy winemaking, and genomic characterization plays a role of primary importance for preservation and sustainable use of these unexploited genetic resources. Among the various molecular techniques available, SSR and retrotransposons-based markers result to be the most valuable for cultivars and biotypes distinctiveness. A total of 62 accessions including 38 local grape cultivars were analyzed with 30 SSR, four REMAP and one IRAP markers to assess their genetic diversity and obtain a complete genomic profiling. The use of VrZAG79, VrZAG112, VVS2, VVMD25 and VVMD5 combined with retrotransposon-based markers proved to be the most discriminating and polymorphic markers for the rapid and unambiguous identification of minority grapevines from Campania region, which is considered one of the most appreciated Italian districts for wine production. Results revealed 58 SSR marker-specific alleles, 22 genotype-specific SSR alleles, and four REMAP and IRAP private bands. Cases of synonymy and homonymy were discovered. In conclusion, we provided evidences that the integrating SSR and retrotransposon-based markers is an effective strategy to assess the genetic diversity of autochthonous grapes, allowing their easy identification.
Collapse
|
8
|
Monden Y, Hara T, Okada Y, Jahana O, Kobayashi A, Tabuchi H, Onaga S, Tahara M. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing. BREEDING SCIENCE 2015; 65:145-53. [PMID: 26069444 PMCID: PMC4430505 DOI: 10.1270/jsbbs.65.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/09/2014] [Indexed: 05/27/2023]
Abstract
Sweetpotato (Ipomoea batatas L.) is an outcrossing hexaploid species with a large number of chromosomes (2n = 6x = 90). Although sweetpotato is one of the world's most important crops, genetic analysis of the species has been hindered by its genetic complexity combined with the lack of a whole genome sequence. In the present study, we constructed a genetic linkage map based on retrotransposon insertion polymorphisms using a mapping population derived from a cross between 'Purple Sweet Lord' (PSL) and '90IDN-47' cultivars. High-throughput sequencing and subsequent data analyses identified many Rtsp-1 retrotransposon insertion sites, and their allele dosages (simplex, duplex, triplex, or double-simplex) were determined based on segregation ratios in the mapping population. Using a pseudo-testcross strategy, 43 and 47 linkage groups were generated for PSL and 90IDN-47, respectively. Interestingly, most of these insertions (~90%) were present in a simplex manner, indicating their utility for linkage map construction in polyploid species. Additionally, our approach led to savings of time and labor for genotyping. Although the number of markers herein was insufficient for map-based cloning, our trial analysis exhibited the utility of retrotransposon-based markers for linkage map construction in sweetpotato.
Collapse
Affiliation(s)
- Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University,
1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700- 8530,
Japan
| | - Takuya Hara
- Graduate School of Environmental and Life Science, Okayama University,
1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700- 8530,
Japan
| | - Yoshihiro Okada
- National Agriculture and Food Research Organization, Itoman Resident Office, Kyushu Okinawa Agricultural Research Center,
820 Makabe, Itoman, Okinawa 901-0336,
Japan
| | - Osamu Jahana
- Okinawa Prefectural Agricultural Research Center,
820 Makabe, Itoman, Okinawa 901-0336,
Japan
| | - Akira Kobayashi
- National Agriculture and Food Research Organization, Kyushu Okinawa Agricultural Research Center,
6651-2 Yokoichi-machi, Miyakonojo, Miyazaki 885-0091,
Japan
| | - Hiroaki Tabuchi
- National Agriculture and Food Research Organization, Kyushu Okinawa Agricultural Research Center,
6651-2 Yokoichi-machi, Miyakonojo, Miyazaki 885-0091,
Japan
| | - Shoko Onaga
- Okinawa Prefectural Agricultural Research Center,
820 Makabe, Itoman, Okinawa 901-0336,
Japan
| | - Makoto Tahara
- Graduate School of Environmental and Life Science, Okayama University,
1-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700- 8530,
Japan
| |
Collapse
|
9
|
A rapid and enhanced DNA detection method for crop cultivar discrimination. J Biotechnol 2014; 185:57-62. [PMID: 24954682 DOI: 10.1016/j.jbiotec.2014.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 06/10/2014] [Indexed: 01/31/2023]
Abstract
In many crops species, the development of a rapid and precise cultivar discrimination system has been required for plant breeding and patent protection of plant cultivars and agricultural products. Here, we successfully evaluated strawberry cultivars via a novel method, namely, the single tag hybridization (STH) chromatographic printed array strip (PAS) using the PCR products of eight genomic regions. In a previous study, we showed that genotyping of eight genomic regions derived from FaRE1 retrotransposon insertion site enabled to discriminate 32 strawberry cultivars precisely, however, this method required agarose/acrylamide gel electrophoresis, thus has the difficulty for practical application. In contrast, novel DNA detection method in this study has some great advantages over standard DNA detection methods, including agarose/acrylamide gel electrophoresis, because it produces signals for DNA detection with dramatically higher sensitivity in a shorter time without any preparation or staining of a gel. Moreover, this method enables the visualization of multiplex signals simultaneously in a single reaction using several independent amplification products. We expect that this novel method will become a rapid and convenient cultivar screening assay for practical purposes, and will be widely applied to various situations, including laboratory research, and on-site inspection of plant cultivars and agricultural products.
Collapse
|
10
|
Kuhn BC, López-Ribera I, da Silva Machado MDFP, Vicient CM. Genetic diversity of maize germplasm assessed by retrotransposon-based markers. Electrophoresis 2014; 35:1921-7. [PMID: 24634146 DOI: 10.1002/elps.201400038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022]
Abstract
Maize is one of the most important crops and also a model for grass genome research. Transposable elements comprise over 78% of the maize genome and their ability to generate new copies makes them good potential markers. Interretrotransposon-amplified polymorphism (IRAP) and retrotransposon microsatellite amplified polymorphism (REMAP) protocols were used for the first time in maize to study the genetic variability between maize cultivars. Ten PCR primers were selected based on a systematic analysis of the sequence conservation in the extremities of different high copy number transposable elements, whereas one primer was chosen based on a microsatellite sequence. Of the 16 primer combinations tested, 14 produced polymorphic bands. These markers were used to identify genetic similarity among 20 maize cultivars selected by their different kernel oil content. Genetic similarity analysis was performed based on the polymorphic band profiles and dendrograms were developed by the unweighted pair-group method with arithmetic averages. Clustering technique revealed that samples were grouped into three clusters that differed in their kernel oil content and size, and in their relative embryo size. In the current investigation, there is evidence that IRAP/REMAP may be useful as markers in maize.
Collapse
Affiliation(s)
- Betty Cristiane Kuhn
- CAPES Scholarship, CAPES Foundation, Brasília, Brazil; Postgraduate Program in Genetics and Breeding, State University of Maringá, Maringá, PR, Brazil
| | | | | | | |
Collapse
|