1
|
Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component. Toxins (Basel) 2022; 14:toxins14110740. [PMID: 36355990 PMCID: PMC9693228 DOI: 10.3390/toxins14110740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 10/23/2022] [Indexed: 01/26/2023] Open
Abstract
Microbial infections represent a problem of great importance at the public health level, with a high rate of morbidity-mortality worldwide. However, treating the different diseases generated by microorganisms requires a gradual increase in acquired resistance when applying or using them against various antibiotic therapies. Resistance is caused by various molecular mechanisms of microorganisms, thus reducing their effectiveness. Consequently, there is a need to search for new opportunities through natural sources with antimicrobial activity. One alternative is using peptides present in different scorpion venoms, specifically from the Buthidae family. Different peptides with biological activity in microorganisms have been characterized as preventing their growth or inhibiting their replication. Therefore, they represent an alternative to be used in the design and development of new-generation antimicrobial drugs in different types of microorganisms, such as bacteria, fungi, viruses, and parasites. Essential aspects for its disclosure, as shown in this review, are the studies carried out on different types of peptides in scorpion venoms with activity against pathogenic microorganisms, highlighting their high therapeutic potential.
Collapse
|
2
|
Khamtorn P, Rungsa P, Jangpromma N, Klaynongsruang S, Daduang J, Tessiri T, Daduang S. Partial proteomic analysis of brown widow spider ( Latrodectus geometricus) venom to determine the biological activities. Toxicon X 2020; 8:100062. [PMID: 33163957 PMCID: PMC7607507 DOI: 10.1016/j.toxcx.2020.100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Spiders use their venom for defence and to capture prey. These venoms contain a cocktail of biologically active compounds that display several different biological activities, such as large molecules and small molecules including peptides, proteins/enzymes, and other components. Thus, venom constituents have attracted the attention of biochemists and pharmacologists over the years. The brown widow spider (Latrodectus geometricus) is a venomous spider found worldwide, including in Thailand. This spider causes human injuries, and the venom has many potential applications. In this study, we investigated the complexity and pharmacology of brown widow spider venom. Spider crude venom was investigated using partial proteome techniques and enzymatic activity, toxicity, and antibacterial activity assessments. We found that crude venom displayed a wide range of molecular masses from 19 to over 97 kDa, with molecular masses of 66 kDa intensely stained. Peptides and proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), which showed that the crude venom contained a variety of substances, including latrotoxins, apolipophorins, hemocyanins, chitinases, arginine kinase, allergen antigen 5-like protein, astacin-like metalloproteases, and serine proteases. High hyaluronidase activity was observed based on the turbidimetric method. The venom presented toxicity in crickets (PD50 = 0.73 ± 0.10 μg/g body weight), and substantial envenomation symptoms, such as slow-motion movement, paralysis, and even death, were noted. Moreover, this venom exhibited potential antibacterial activity against the gram-positive Bacillus subtilis but not the gram-negative Pseudomonas aeruginosa. Spider venom contains numerous molecules with biological activity, such as latrotoxins, which affect insects, and enzymes. In addition to latrotoxins, certain enzymes in venom are hypothesized to exhibit toxicity and antimicrobial activity. This study provides important information for the further development of natural compounds or insecticidal toxins. 8 proteins were identified using mass spectrometry. Venom exhibited potential hyaluronidase activity and antibacterial activity. Crude venom presented toxicity in crickets. The venom peptides can develop for a natural lead drug or an insecticidal toxin.
Collapse
Key Words
- Antibacterial activity
- BWSV, brown widow spider venom
- Hyaluronidase
- LC-MS/MS, liquid chromatography–mass spectrometry/mass spectrometry
- Latrodectus geometricus
- OD600, optical density at 600 nm
- PD50, 50% paralytic dose
- Toxicity
- Venom
- Widow spider
- kDa, kilodalton
- α-, β-, γ-, δ-, ε-LIT, alpha-, beta-, gramma-, delta-, epsilon-latroinsectotoxins
- α-latrocrustotoxin, alpha-latrocrustotoxin
Collapse
Affiliation(s)
- Pornsawan Khamtorn
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prapenpuksiri Rungsa
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanee Tessiri
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
The Scorpion Venom Peptide Smp76 Inhibits Viral Infection by Regulating Type-I Interferon Response. Virol Sin 2018; 33:545-556. [PMID: 30569290 DOI: 10.1007/s12250-018-0068-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there are few effective vaccines and therapies available against these viruses. Therefore, the discovery of new antiviral agents is critical. Herein, a scorpion venom peptide (Smp76) characterized from Scorpio maurus palmatus was successfully expressed and purified in Escherichia coli BL21(DE3). The recombinant Smp76 (rSmp76) was found to effectively inhibit DENV and ZIKV infections in a dose-dependent manner in both cultured cell lines and primary mouse macrophages. Interestingly, rSmp76 did not inactivate the viral particles directly but suppressed the established viral infection, similar to the effect of interferon (IFN)-β. Mechanistically, rSmp76 was revealed to upregulate the expression of IFN-β by activating interferon regulatory transcription factor 3 (IRF3) phosphorylation, enhancing the type-I IFN response and inhibiting viral infection. This mechanism is significantly different from traditional virucidal antimicrobial peptides (AMPs). Overall, the scorpion venom peptide Smp76 is a potential new antiviral agent with a unique mechanism involving type-I IFN responses, demonstrating that natural AMPs can enhance immunity by functioning as immunomodulators.
Collapse
|
4
|
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018; 10:toxins10110452. [PMID: 30400220 PMCID: PMC6265855 DOI: 10.3390/toxins10110452] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Snakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist. In the later decades, new biotechnological tools have been applied with the aim of improving the efficacy, safety, and affordability of antivenoms. Within the avenues explored, novel immunization strategies using synthetic peptide epitopes, recombinant toxins (or toxoids), or DNA strings as immunogens have demonstrated potential for generating antivenoms with high therapeutic antibody titers and broad neutralizing capacity. Furthermore, these approaches circumvent the need for venom in the production process of antivenoms, thereby limiting some of the complications associated with animal captivity and venom collection. Finally, an important benefit of innovative immunization approaches is that they are often compatible with existing antivenom manufacturing setups. In this review, we compile all reported studies examining venom-independent innovative immunization strategies for antivenom development. In addition, a brief description of toxin families of medical relevance found in snake, scorpion, and spider venoms is presented, as well as how biochemical, bioinformatic, and omics tools could aid the development of next-generation antivenoms.
Collapse
Affiliation(s)
| | - Albert Fuglsang-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
- Department of Biology, University of Copenhagen, DK-2200 København N, Denmark.
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Amorim FG, Cordeiro FA, Pinheiro-Júnior EL, Boldrini-França J, Arantes EC. Microbial production of toxins from the scorpion venom: properties and applications. Appl Microbiol Biotechnol 2018; 102:6319-6331. [PMID: 29858954 DOI: 10.1007/s00253-018-9122-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom are composed mainly of bioactive proteins and peptides that may serve as lead compounds for the design of biotechnological tools and therapeutic drugs. However, exploring the therapeutic potential of scorpion venom components is mainly impaired by the low yield of purified toxins from milked venom. Therefore, production of toxin-derived peptides and proteins by heterologous expression is the strategy of choice for research groups and pharmaceutical industry to overcome this limitation. Recombinant expression in microorganisms is often the first choice, since bacteria and yeast systems combine high level of recombinant protein expression, fast cell growth and multiplication and simple media requirement. Herein, we present a comprehensive revision, which describes the scorpion venom components that were produced in their recombinant forms using microbial systems. In addition, we highlight the pros and cons of performing the heterologous expression of these compounds, regarding the particularities of each microorganism and how these processes can affect the application of these venom components. The most used microbial system in the heterologous expression of scorpion venom components is Escherichia coli (85%), and among all the recombinant venom components produced, 69% were neurotoxins. This review may light up future researchers in the choice of the best expression system to produce scorpion venom components of interest.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Francielle Almeida Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Johara Boldrini-França
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
6
|
Yan YQ, Xie J, Wang JF, Shi ZF, Zhang X, Du YP, Zhao XC. Scorpion inhibits epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. Exp Biol Med (Maywood) 2018; 243:645-654. [PMID: 29486578 PMCID: PMC6582398 DOI: 10.1177/1535370218762514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial-mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells' invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells' invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.
Collapse
Affiliation(s)
- Yi-Quan Yan
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Aerospace Physiology, Institute of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Juan Xie
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jing-Fu Wang
- Department of Oral and Maxillofacial Surgery, the Third Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhao-Feng Shi
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiang Zhang
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yong-Ping Du
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xing-Cheng Zhao
- Department of Aerospace Physiology, Institute of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
7
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|