1
|
Fang W, Wang E, Liu P, Gao X, Hou X, Hu G, Li G, Cheng J, Jiang C, Yan L, Wu C, Xu Z, Liu P. The relativity analysis of hypoxia inducible factor-1α in pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Avian Pathol 2024; 53:441-450. [PMID: 38887084 DOI: 10.1080/03079457.2024.2358882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Ascites syndrome (AS) in broiler chickens, also known as pulmonary arterial hypertension (PAH), is a significant disease in the poultry industry. It is a nutritional metabolic disease that is closely associated with hypoxia-inducible factors and rapid growth. The rise in pulmonary artery pressure is a crucial characteristic of AS and is instrumental in its development. Hypoxia-inducible factor 1α (HIF-1α) is an active subunit of a key transcription factor in the oxygen-sensing pathway. HIF-1α plays a vital role in oxygen homeostasis and the development of pulmonary hypertension. Studying the effects of HIF-1α on pulmonary hypertension in humans or mammals, as well as ascites in broilers, can help us understand the pathogenesis of AS. Therefore, this review aims to (1) summarize the mechanism of HIF-1α in the development of pulmonary hypertension, (2) provide theoretical significance in explaining the mechanism of HIF-1α in the development of pulmonary arterial hypertension (ascites syndrome) in broilers, and (3) establish the correlation between HIF-1α and pulmonary arterial hypertension (ascites syndrome) in broilers. HIGHLIGHTSExplains the hypoxic mechanism of HIF-1α.Linking HIF-1α to pulmonary hypertension in broilers.Explains the role of microRNAs in pulmonary arterial hypertension in broilers.
Collapse
Affiliation(s)
- Weile Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Enqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaolu Hou
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| | - Guoliang Hu
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Juan Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Linjie Yan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, USA
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Gu Y, Zhou C, Guo X, Huang C, Liu P, Hu G, Liu S, Li G, Zhuang Y, Wu C, Xu Z, Liu P. Preparation of a JAZF1 protein polyclonal antibody and its potential role in broiler ascites syndrome. Int J Biol Macromol 2022; 206:501-510. [PMID: 35245575 DOI: 10.1016/j.ijbiomac.2022.02.190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
As a novel functional protein, juxtaposed with another zinc finger protein 1 (JAZF1) can regulate the growth and apoptosis through various pathways, and maintain the body's normal physiological metabolism. To explore the important role of JAZF1 in broiler ascites syndrome (BAS), we analysed the expression and distribution of the protein in poultry and mammal tissues based on the prepared polyclonal antibody. In this study, the recombinant plasmid PET32a-JAZF1 was constructed by TA cloning, subcloning and other technical methods, and the fusion protein His-JAZF1 was successfully expressed. After purification, His-JAZF1 was used as the antigen to prepare high-quality chicken-derived antibodies. Subsequently, the results showed that JAZF1 protein in broiler tissues could be specifically recognized by this antibody. Immunofluorescence showed that JAZF1 protein mainly exists in the cytoplasm of pulmonary artery, liver, kidney, heart and lung tissue cells of various animals. The expression of this protein was more obvious in broiler and duck tissues than in mammalian tissues. In addition, western blotting combined with immunofluorescence showed that BAS caused a significant decrease in JAZF1 protein in tissue cells. This effect further indicated that JAZF1 protein was closely related to the occurrence of BAS and provided a new entry point for the functional study of JAZF1 protein.
Collapse
Affiliation(s)
- Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Sanfeng Liu
- Technology System of Modern Agricultural Poultry Industry of Jiangxi Province, Jangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, 45435, United States of America
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
3
|
Davis DN, Strong MD, Chambers E, Hart MD, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W. A role for zinc transporter gene SLC39A12 in the nervous system and beyond. Gene 2021; 799:145824. [PMID: 34252531 DOI: 10.1016/j.gene.2021.145824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
The SLC39A12 gene encodes the zinc transporter protein ZIP12, which is expressed across many tissues and is highly abundant in the vertebrate nervous system. As a zinc transporter, ZIP12 functions to transport zinc across cellular membranes, including cellular zinc influx across the plasma membrane. Genome-wide association and exome sequencing studies have shown that brain susceptibility-weighted magnetic resonance imaging (MRI) intensity is associated with ZIP12 polymorphisms and rare mutations. ZIP12 is required for neural tube closure and embryonic development in Xenopus tropicalis. Frog embryos depleted of ZIP12 by antisense morpholinos develop an anterior neural tube defect and lack viability. ZIP12 is also necessary for neurite outgrowth and mitochondrial function in mouse neural cells. ZIP12 mRNA is increased in brain regions of schizophrenic patients. Outside of the nervous system, hypoxia induces ZIP12 expression in multiple mammalian species, including humans, which leads to endothelial and smooth muscle thickening in the lung and contributes towards pulmonary hypertension. Other studies have associated ZIP12 with other diseases such as cancer. Given that ZIP12 is highly expressed in the brain and that susceptibility-weighted MRI is associated with brain metal content, ZIP12 may affect neurological diseases and psychiatric illnesses such as Parkinson's disease, Alzheimer's disease, and schizophrenia. Furthermore, the induction of ZIP12 and resultant zinc uptake under pathophysiological conditions may be a critical component of disease pathology, such as in pulmonary hypertension. Drug compounds that bind metals like zinc may be able to treat diseases associated with impaired zinc homeostasis and altered ZIP12 function.
Collapse
Affiliation(s)
- Danielle N Davis
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Morgan D Strong
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Emily Chambers
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Matthew D Hart
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Ahmed Bettaieb
- University of Tennessee, Department of Nutrition, Knoxville, TN 37996, USA
| | - Stephen L Clarke
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Barbara J Stoecker
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Dingbo Lin
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA
| | - Winyoo Chowanadisai
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK 74078, USA.
| |
Collapse
|