1
|
Shi J, Oger PM, Cao P, Zhang L. Thermostable DNA ligases from hyperthermophiles in biotechnology. Front Microbiol 2023; 14:1198784. [PMID: 37293226 PMCID: PMC10244674 DOI: 10.3389/fmicb.2023.1198784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
DNA ligase is an important enzyme ubiquitous in all three kingdoms of life that can ligate DNA strands, thus playing essential roles in DNA replication, repair and recombination in vivo. In vitro, DNA ligase is also used in biotechnological applications requiring in DNA manipulation, including molecular cloning, mutation detection, DNA assembly, DNA sequencing, and other aspects. Thermophilic and thermostable enzymes from hyperthermophiles that thrive in the high-temperature (above 80°C) environments have provided an important pool of useful enzymes as biotechnological reagents. Similar to other organisms, each hyperthermophile harbors at least one DNA ligase. In this review, we summarize recent progress on structural and biochemical properties of thermostable DNA ligases from hyperthermophiles, focusing on similarities and differences between DNA ligases from hyperthermophilic bacteria and archaea, and between these thermostable DNA ligases and non-thermostable homologs. Additionally, altered thermostable DNA ligases are discussed. Possessing improved fidelity or thermostability compared to the wild-type enzymes, they could be potential DNA ligases for biotechnology in the future. Importantly, we also describe current applications of thermostable DNA ligases from hyperthermophiles in biotechnology.
Collapse
Affiliation(s)
- Jingru Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Philippe M. Oger
- University of Lyon, INSA de Lyon, CNRS UMR, Villeurbanne, France
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Shi H, Huang Y, Gan Q, Rui M, Chen H, Tu C, Yang Z, Oger P, Zhang L. Biochemical characterization of a thermostable DNA ligase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Appl Microbiol Biotechnol 2019; 103:3795-3806. [DOI: 10.1007/s00253-019-09736-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|
3
|
Chen SH, Yu X. Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Res 2019; 47:1321-1334. [PMID: 30496552 PMCID: PMC6379666 DOI: 10.1093/nar/gky1202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022] Open
Abstract
All the eukaryotic DNA ligases are known to use adenosine triphosphate (ATP) for DNA ligation. Here, we report that human DNA ligase IV, a key enzyme in DNA double-strand break (DSB) repair, is able to use NAD+ as a substrate for double-stranded DNA ligation. In the in vitro ligation assays, we show that the recombinant Ligase IV can use both ATP and NAD+ for DNA ligation. For NAD+-mediated ligation, the BRCA1 C-terminal (BRCT) domain of Ligase IV recognizes NAD+ and facilitates the adenylation of Ligase IV, the first step of ligation. Although XRCC4, the functional partner of Ligase IV, is not required for the NAD+-mediated adenylation, it regulates the transfer of AMP moiety from Ligase IV to the DNA end. Moreover, cancer-associated mutation in the BRCT domain of Ligase IV disrupts the interaction with NAD+, thus abolishes the NAD+-mediated adenylation of Ligase IV and DSB ligation. Disrupting the NAD+ recognition site in the BRCT domain impairs non-homologous end joining (NHEJ) in cell. Taken together, our study reveals that in addition to ATP, Ligase IV may use NAD+ as an alternative adenylation donor for NHEJ repair and maintaining genomic stability.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Cabrera MÁ, Blamey JM. Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 2018; 51:37. [PMID: 30290805 PMCID: PMC6172850 DOI: 10.1186/s40659-018-0186-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile.
| |
Collapse
|
5
|
Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:170571. [PMID: 26494982 PMCID: PMC4606414 DOI: 10.1155/2015/170571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area.
Collapse
|
6
|
Kim JH, Lee KK, Sun Y, Seo GJ, Cho SS, Kwon SH, Kwon ST. Broad nucleotide cofactor specificity of DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus and its evolutionary significance. Extremophiles 2013; 17:515-22. [PMID: 23546841 DOI: 10.1007/s00792-013-0536-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
Abstract
The nucleotide cofactor specificity of the DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus (Hbu) was studied to investigate the evolutionary relationship of DNA ligases. The Hbu DNA ligase gene was expressed under control of the T7lac promoter of pTARG in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was purified using the IMPACT™-CN system (intein-mediated purification with an affinity chitin-binding tag) and cation-ion (Arg-tag) chromatography. The optimal temperature for Hbu DNA ligase activity was 75 °C, and the optimal pH was 8.0 in Tris-HCl. The activity was highly dependent on MgCl2 or MnCl2 with maximal activity above 5 mM MgCl2 and 2 mM MnCl2. Notably, Hbu DNA ligase can use ADP and GTP in addition to ATP. The broad nucleotide cofactor specificity of Hbu DNA ligase might exemplify an undifferentiated ancestral stage in the evolution of DNA ligases. This study provides new evidence for possible evolutionary relationships among DNA ligases.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- Department of Genetic Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Petrova T, Bezsudnova EY, Boyko KM, Mardanov AV, Polyakov KM, Volkov VV, Kozin M, Ravin NV, Shabalin IG, Skryabin KG, Stekhanova TN, Kovalchuk MV, Popov VO. ATP-dependent DNA ligase from Thermococcus sp. 1519 displays a new arrangement of the OB-fold domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1440-7. [PMID: 23192021 PMCID: PMC3509962 DOI: 10.1107/s1744309112043394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022]
Abstract
DNA ligases join single-strand breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 5'-phosphate and 3'-hydroxyl termini. Their function is essential for maintaining genome integrity in the replication, recombination and repair of DNA. High flexibility is important for the function of DNA ligase molecules. Two types of overall conformations of archaeal DNA ligase that depend on the relative position of the OB-fold domain have previously been revealed: closed and open extended conformations. The structure of ATP-dependent DNA ligase from Thermococcus sp. 1519 (LigTh1519) in the crystalline state determined at a resolution of 3.02 Å shows a new relative arrangement of the OB-fold domain which is intermediate between the positions of this domain in the closed and the open extended conformations of previously determined archaeal DNA ligases. However, small-angle X-ray scattering (SAXS) measurements indicate that in solution the LigTh1519 molecule adopts either an open extended conformation or both an intermediate and an open extended conformation with the open extended conformation being dominant.
Collapse
Affiliation(s)
- T Petrova
- Bach Institute of Biochemistry, RAS, Leninsky pr. 33, Moscow 119071, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ishino Y, Ishino S. Rapid progress of DNA replication studies in Archaea, the third domain of life. SCIENCE CHINA-LIFE SCIENCES 2012; 55:386-403. [PMID: 22645083 DOI: 10.1007/s11427-012-4324-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 02/04/2023]
Abstract
Archaea, the third domain of life, are interesting organisms to study from the aspects of molecular and evolutionary biology. Archaeal cells have a unicellular ultrastructure without a nucleus, resembling bacterial cells, but the proteins involved in genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of Eukaryota. Therefore, archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells. Moreover, the hyperthermophilic archaea provide very stable proteins, which are especially useful for the isolation of replisomal multicomplexes, to analyze their structures and functions. This review focuses on the history, current status, and future directions of archaeal DNA replication studies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
9
|
Petrova TE, Bezsudnova EY, Dorokhov BD, Slutskaya ES, Polyakov KM, Dorovatovskiy PV, Ravin NV, Skryabin KG, Kovalchuk MV, Popov VO. Expression, purification, crystallization and preliminary crystallographic analysis of a thermostable DNA ligase from the archaeon Thermococcus sibiricus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:163-5. [PMID: 22297989 PMCID: PMC3274393 DOI: 10.1107/s1744309111050913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/26/2011] [Indexed: 11/10/2022]
Abstract
DNA ligases join single-strand breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 5'-phosphate and 3'-hydroxyl termini. Their function is essential to maintain the integrity of the genome in DNA replication, recombination and repair. A recombinant ATP-dependent DNA ligase from the hyperthermophilic anaerobic archaeon Thermococcus sibiricus was expressed in Escherichia coli and purified. Crystals were grown by vapour diffusion using the hanging-drop method with 17%(w/v) PEG 4000 and 8.5%(v/v) 2-propanol as precipitants. A diffraction experiment was performed with a single crystal, which diffracted X-rays to 3.0 Å resolution. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 58.590, b = 87.540, c = 126.300 Å.
Collapse
Affiliation(s)
- T E Petrova
- Bach Institute of Biochemistry, RAS, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Supangat S, An YJ, Sun Y, Kwon ST, Cha SS. Purification, crystallization and preliminary crystallographic analysis of a multiple cofactor-dependent DNA ligase from Sulfophobococcus zilligii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1583-5. [PMID: 21139200 DOI: 10.1107/s1744309110034135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022]
Abstract
A recombinant DNA ligase from Sulfophobococcus zilligii that shows multiple cofactor specificity (ATP, ADP and GTP) was expressed in Escherichia coli and purified under reducing conditions. Crystals were obtained by the microbatch crystallization method at 295 K in a drop containing 1 µl protein solution (10 mg ml(-1)) and an equal volume of mother liquor [0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 10 000]. A data set was collected to 2.9 Å resolution using synchrotron radiation. The crystals belonged to space group P1, with unit-cell parameters a=63.7, b=77.1, c=77.8 Å, α=83.4, β=82.4, γ=74.6°. Assuming the presence of two molecules in the unit cell, the solvent content was estimated to be about 53.4%.
Collapse
Affiliation(s)
- Supangat Supangat
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744, Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Sun Y, Seo MS, Kim JH, Kim YJ, Kim GA, Lee JI, Lee JH, Kwon ST. Novel DNA ligase with broad nucleotide cofactor specificity from the hyperthermophilic crenarchaeon Sulfophobococcus zilligii: influence of ancestral DNA ligase on cofactor utilization. Environ Microbiol 2008; 10:3212-24. [PMID: 18647334 DOI: 10.1111/j.1462-2920.2008.01710.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA ligases are divided into two groups according to their cofactor requirement to form ligase-adenylate, ATP-dependent DNA ligases and NAD(+)-dependent DNA ligases. The conventional view that archaeal DNA ligases only utilize ATP has recently been disputed with discoveries of dual-specificity DNA ligases (ATP/ADP or ATP/NAD(+)) from the orders Desulfurococcales and Thermococcales. Here, we studied DNA ligase encoded by the hyperthermophilic crenarchaeon Sulfophobococcus zilligii. The ligase exhibited multiple cofactor specificity utilizing ADP and GTP in addition to ATP. The unusual cofactor specificity was confirmed via a DNA ligase nick-closing activity assay using a fluorescein/biotin-labelled oligonucleotide and a radiolabelled oligonucleotide. The exploitation of GTP as a catalytic energy source has not to date been reported in any known DNA ligase. This phenomenon may provide evolutionary evidence of the nucleotide cofactor utilization by DNA ligases. To bolster this hypothesis, we summarize and evaluate previous assertions. We contend that DNA ligase evolution likely started from crenarchaeotal DNA ligases and diverged to eukaryal DNA ligases and euryarchaeotal DNA ligases. Subsequently, the NAD(+)-utilizing property of some euryarchaeotal DNA ligases may have successfully differentiated to bacterial NAD(+)-dependent DNA ligases.
Collapse
Affiliation(s)
- Younguk Sun
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiyonari S, Kamigochi T, Ishino Y. A single amino acid substitution in the DNA-binding domain of Aeropyrum pernix DNA ligase impairs its interaction with proliferating cell nuclear antigen. Extremophiles 2007; 11:675-84. [PMID: 17487442 DOI: 10.1007/s00792-007-0083-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/09/2007] [Indexed: 11/25/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) is known as a DNA sliding clamp that acts as a platform for the assembly of enzymes involved in DNA replication and repair. Previously, it was reported that a crenarchaeal PCNA formed a heterotrimeric structure, and that each PCNA subunit has distinct binding specificity to PCNA-binding proteins. Here we describe the PCNA-binding properties of a DNA ligase from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. Based on our findings on the Pyrococcus furiosus DNA ligase-PCNA interaction, we predicted that the aromatic residue, Phe132, in the DNA-binding domain of A. pernix DNA ligase (ApeLig) would play a critical role in binding to A. pernix PCNA (ApePCNA). Surface plasmon resonance analyses revealed that the ApeLig F132A mutant does not interact with an immobilized subunit of ApePCNA. Furthermore, we could not detect any stimulation of the ligation activity of the ApeLig F132A protein by ApePCNA in vitro. These results indicated that the phenylalanine, which is located in our predicted PCNA-binding region in ApeLig, has a critical role for the physical and functional interaction with ApePCNA.
Collapse
Affiliation(s)
- Shinichi Kiyonari
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|