1
|
Kim S, Kim Y, Suh DH, Lee CH, Yoo SM, Lee SY, Yoon SH. Heat-responsive and time-resolved transcriptome and metabolome analyses of Escherichia coli uncover thermo-tolerant mechanisms. Sci Rep 2020; 10:17715. [PMID: 33077799 PMCID: PMC7572479 DOI: 10.1038/s41598-020-74606-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022] Open
Abstract
Current understanding of heat shock response has been complicated by the fact that heat stress is inevitably accompanied by changes in specific growth rates and growth stages. In this study, a chemostat culture was successfully performed to avoid the physico-chemical and biological changes that accompany heatshock, which provided a unique opportunity to investigate the full range of cellular responses to thermal stress, ranging from temporary adjustment to phenotypic adaptation at multi-omics levels. Heat-responsive and time-resolved changes in the transcriptome and metabolome of a widely used E. coli strain BL21(DE3) were explored in which the temperature was upshifted from 37 to 42 °C. Omics profiles were categorized into early (2 and 10 min), middle (0.5, 1, and 2 h), and late (4, 8, and 40 h) stages of heat stress, each of which reflected the initiation, adaptation, and phenotypic plasticity steps of the stress response. The continued heat stress modulated global gene expression by controlling the expression levels of sigma factors in different time frames, including unexpected downregulation of the second heatshock sigma factor gene (rpoE) upon the heat stress. Trehalose, cadaverine, and enterobactin showed increased production to deal with the heat-induced oxidative stress. Genes highly expressed at the late stage were experimentally validated to provide thermotolerance. Intriguingly, a cryptic capsular gene cluster showed considerably high expression level only at the late stage, and its expression was essential for cell growth at high temperature. Granule-forming and elongated cells were observed at the late stage, which was morphological plasticity occurred as a result of acclimation to the continued heat stress. Whole process of thermal adaptation along with the genetic and metabolic changes at fine temporal resolution will contribute to far-reaching comprehension of the heat shock response. Further, the identified thermotolerant genes will be useful to rationally engineer thermotolerant microorganisms.
Collapse
Affiliation(s)
- Sinyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, 34141, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Han MJ. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments. J Biosci Bioeng 2016; 122:1-9. [DOI: 10.1016/j.jbiosc.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
|
3
|
Kang YS, Song JA, Han KY, Lee J. Escherichia coli EDA is a novel fusion expression partner to improve solubility of aggregation-prone heterologous proteins. J Biotechnol 2015; 194:39-47. [DOI: 10.1016/j.jbiotec.2014.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/26/2023]
|
4
|
Ahn KY, Lee B, Han KY, Song JA, Lee DS, Lee J. Synthesis of Mycoplasma arginine deiminase in E. coli using stress-responsive proteins. Enzyme Microb Technol 2014; 63:46-9. [DOI: 10.1016/j.enzmictec.2014.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022]
|
5
|
Song JA, Lee DS, Park JS, Han KY, Lee J. A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins. Enzyme Microb Technol 2011; 49:124-30. [PMID: 22112398 DOI: 10.1016/j.enzmictec.2011.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
Through the proteome analysis of Escherichia coli BL21(DE3), we previously identified the stress-responsive protein, arsenate reductase (ArsC), that showed a high cytoplasmic solubility and a folding capacity even in the presence of stress-inducing reagents. In this study, we used ArsC as an N-terminal fusion partner to synthesize nine aggregation-prone proteins as water-soluble forms. As a result, solubility of the aggregation-prone proteins increased dramatically by the fusion of ArsC, due presumably to its tendency to facilitate the folding of target proteins. Also, we evaluated and confirmed the efficacy of ArsC-fusion expression in making the fusion-expressed target proteins have their own native function or structure. That is, the self-assembly function of human ferritin light chain, l-arginine-degrading function of arginine deiminase, and the correct secondary structure of human granulocyte colony stimulating factor were clearly observed through transmission electron microscope analysis, colorimetric enzyme activity assay, and circular dichroism, respectively. It is strongly suggested that ArsC can be in general an efficient fusion expression partner for the production of soluble and active heterologous proteins in E. coli.
Collapse
Affiliation(s)
- Jong-Am Song
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
6
|
Han MJ, Lee JW, Lee SY. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics 2011; 11:721-43. [DOI: 10.1002/pmic.201000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 12/18/2022]
|
7
|
Han MJ, Lee SY, Koh ST, Noh SG, Han WH. Biotechnological applications of microbial proteomes. J Biotechnol 2010; 145:341-9. [PMID: 20045032 DOI: 10.1016/j.jbiotec.2009.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/21/2009] [Accepted: 12/23/2009] [Indexed: 01/06/2023]
Abstract
Advances in proteomic technologies have led to the creation of large-scale proteome databases that can be used to elucidate invaluable information on the dynamics of the metabolic, signaling and regulatory networks and to aid understanding of physiological changes. In particular, proteomics can have practical applications, for example, through the identification of proteins that may be potential targets for the biotechnology industry, and through the extension of our understanding of the physiological action of these proteins. In this review, we describe proteomic approaches for the discovery of targets that have potential biotechnological applications. These targets include promoters, chaperones, soluble fusion partners, anchoring motifs, and excretion fusion partners. In addition, we discuss the potential applications of proteomic techniques for the design of future bioprocesses and the optimization of existing ones. Successful applications of proteomic information have proven to have enormous value for both scientific and practical applications.
Collapse
Affiliation(s)
- Mee-Jung Han
- Department of Chemical and Biomolecular Engineering, Dongyang University, # 1 Gyochon-dong, Punggi-eup, Yeongju, Gyeongbuk 750-711, Republic of Korea.
| | | | | | | | | |
Collapse
|
8
|
Seo HS, Kim SE, Han KY, Park JS, Kim YH, Sim SJ, Lee J. Functional fusion mutant of Candida antarctica lipase B (CalB) expressed in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:519-25. [PMID: 19159700 DOI: 10.1016/j.bbapap.2008.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/18/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
Abstract
Candida antarctica lipase B (CalB) was functionally expressed in the cytoplasm of Escherichia coli Origami(DE3) with the N-terminus fusion of E. coli endogenous proteins. The previously-identified stress responsive proteins through comparative proteome analyses such as malate dehydrogenase (Mdh), spermidine/putrescine-binding periplasmic protein (PotD), and FKBP-type peptidyl-prolyl cis-trans isomerase (PPIases) (SlyD) dramatically increased the solubility of CalB in E. coli cytoplasm when used as N-terminus fusion partners. We demonstrated that Mdh, PotD, and SlyD were powerful solubility enhancers that presumably facilitated the protein folding of CalB. Moreover, among the various fusion mutants, Mdh-CalB showed the highest hydrolytic activity and was as biologically active as standard CalB. Similarly to the previous report, the electrophoretic properties of CalB indicate that CalB seems to form dimer-based oligomer structures. We evaluated the structural compatibility between the fusion partner protein and CalB, which seems to be of crucial importance upon the bioactive dimer formation of CalB and might affect the substrate accessibility to the enzyme active site, thereby determining the biological activities of the fusion mutants.
Collapse
Affiliation(s)
- Hyuk-Seong Seo
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Gu, Seoul 136-713, South Korea
| | | | | | | | | | | | | |
Collapse
|