1
|
Shrivastava M, Aishwarya A, Fontes CMGA, Goyal A. A novel bifunctional type I α-l-arabinofuranosidase of family 43 glycoside hydrolase (BoGH43_35) from Bacteroides ovatus with endo-β-1,4-xylanase activity. Carbohydr Res 2025; 552:109432. [PMID: 40010274 DOI: 10.1016/j.carres.2025.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
The gut bacterium Bacteroides ovatus harbors a diverse arsenal of glycoside hydrolases (GHs), which play pivotal roles in degrading dietary polysaccharides. In this study, we characterized a novel glycoside hydrolase from family 43 and subfamily 35 (BoGH43_35), cloned from B. ovatus. The 1956 bp gene was expressed in Escherichia coli BL21 (DE3), yielding a homogeneous soluble recombinant enzyme (∼74 kDa) upon purification through immobilized metal-ion affinity chromatography (IMAC). BoGH43_35 exhibited a remarkable specificity for arabinoxylans, with maximum catalytic activity (4.9 U mg-1) against wheat arabinoxylan (low-viscosity), followed by 3.0 U mg-1 against rye arabinoxylan (high viscosity) and beechwood xylan (2.3 U mg-1). Optimal enzymatic performance was achieved at 37 °C and pH 7.0 having kinetic parameters of Vmax 5.7 U mg-1 and KM calculated to be 2.7 mg mL-1 for wheat arabinoxylan. Notably, BoGH43_35 retained stability within an acidic pH range (4-5) and displayed a half-life of 89 min at 30 °C. Protein thermal stability assays revealed a melting temperature (Tm) of 41.0 °C. Thin-layer chromatography (TLC) and 1H NMR analyses of hydrolysed products confirmed the enzyme's dual functionality: an initial α-l-arabinofuranosidase (EC 3.2.1.55) activity, followed by an endo-β-1,4-xylanase (EC 3.2.1.8) activity, as evidenced by the release of xylooligosaccharides, including xylobiose and xylotriose, from xylans. Further structural analysis demonstrated BoGH43_35's ability to hydrolyze monosubstituted arabinofuranosyl residues from α-1,2- or α-1,3-linked arabinoxylan, confirming its type I α-l-arabinofuranosidase activity. This multifunctional enzyme holds potential in the valorization of hemicellulosic biomass and the production of prebiotic oligosaccharides and other biotechnological applications.
Collapse
Affiliation(s)
- Madhulika Shrivastava
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Aishwarya Aishwarya
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal; NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício J, 1649-038, Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Yu X, Xing A, Wu X, Wei M, Wang D, Li F, Lyu Y, Liu J. Preparation and characterization of ferulic oligosaccharides from different sources by cell-free GH10 and GH11 xylanases. Int J Biol Macromol 2024; 282:137287. [PMID: 39510479 DOI: 10.1016/j.ijbiomac.2024.137287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The feruloyl oligosaccharides (FOs) produced by the decomposition of plant hemicellulose have broad potential applications in the food and biomedical areas. FOs were prepared through the specific enzymatic degradation of insoluble dietary fiber from different sources by cell-free GH10 and GH11 xylanases. The cell-free GH10 and GH11 xylanases were obtained by the heterologous expression in Escherichia coli. The enzymatic hydrolysis conditions were optimized as follows: temperature 50 °C, pH 5.5, hydrolysis time 12 h, GH10 xylanase addition 101.74 U, and GH11 xylanase addition 121.60 U. The compositions and structural characterization of wheat bran FOs (WB-FOs), corncob FOs (CC-FOs), and buckwheat straw FOs (BS-FOs) were identified by fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), high-performance liquid chromatography (HPLC), and electrospray ionization tandem mass spectrometry (ESI-MS). Degrees of polymerization (DP) of WB-FOs, CC-FOs, and BS-FOs were 3-11, 3-7, and 3-6, respectively. Ultraviolet (UV) radiation was investigated in vitro. The results demonstrated that BS-FOs possessed excellent UV resistance and photostability, followed by effectiveness in WB-FOs and CC-FOs. These results have improved our understanding of the relationship between FOs with different structural types and their UV radiation.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aohui Xing
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuanming Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
3
|
Ji S, Gavande PV, Choudhury B, Goyal A. Computational design and structure dynamics analysis of bifunctional chimera of endoxylanase from Clostridium thermocellum and xylosidase from Bacteroides ovatus. 3 Biotech 2023; 13:59. [PMID: 36714550 PMCID: PMC9877272 DOI: 10.1007/s13205-023-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Development of chimeric enzymes by protein engineering can more efficiently contribute toward biomass conversion for bioenergy generation. Therefore, prior to experimental validation, a computational approach by modeling and molecular dynamic simulation can assess the structural and functional behavior of chimeric enzymes. In this study, a bifunctional chimera, CtXyn11A-BoGH43A comprising an efficient endoxylanase (CtXyn11A) from Clostridium thermocellum and xylosidase (BoGH43A) from Bacteroides ovatus was computationally designed and its binding and stability analysis with xylooligosaccharides were performed. The modeled chimera showed β-jellyroll fold for CtXyn11A and 5-bladed β-propeller fold for BoGH43A module. Stereo-chemical properties analyzed by Ramachandran plot showed 98.8% residues in allowed region, validating the modeled chimera. The catalytic residues identified by multiple sequence alignment were Glu94 and Glu184 for CtXyn11A and Asp229 and Glu384 for BoGH43A modules. CtXyn11A followed retaining-type, whereas BoGH43A enforced inverting-type of reaction mechanism during xylan hydrolysis as revealed by superposition and GH11 and GH43 familial analyses. Molecular docking studies showed binding energy, (ΔG) - 4.54 and - 4.18 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylobiose, while - 3.94 and - 3.82 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylotriose. MD simulation of CtXyn11A-BoGH43A complexed with xylobiose and xylotriose till 100 ns displayed stability by RMSD, compactness by R g and conformational stability by SASA analyses. The lowered values of RMSF in active-site residues, Glu94, Glu184, Asp229, Asp335 and Glu384 confirmed the efficient binding of chimera with xylobiose and xylotriose. These results were in agreement with the earlier experimental studies on CtXyn11A releasing xylooligosaccharides from xylan and BoGH43A releasing d-xylose from xylooligosaccharides and xylobiose. The chimera showed stronger affinity in terms of total short-range interaction energy; - 190 and - 121 kJ/mol for with xylobiose and xylotriose, respectively. The bifunctional chimera, CtXyn11A-BoGH43A showed stability and integrity with xylobiose and xylotriose. The designed chimera can be constructed and applied for efficient biomass conversion.
Collapse
Affiliation(s)
- Shyam Ji
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Parmeshwar Vitthal Gavande
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bipasha Choudhury
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
4
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
5
|
Abedi E, Fatemi F, Sefidbakht Y, Siadat SER. Development and characterization of a thermostable GH11/GH10 xylan degrading chimeric enzyme. Enzyme Microb Technol 2021; 149:109854. [PMID: 34311891 DOI: 10.1016/j.enzmictec.2021.109854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Xylanases are categorized into different family groups, two of which are glycoside hydrolases 10 (GH10) and 11 (GH11) families. These well-characterized xylanases demonstrate different modes of action in hydrolysis of xylans. Imitating certain types of microorganisms to produce bifunctional enzymes such as engineered xylanases has gained considerable attention among researchers. In this study, a recombinant chimeric enzyme (X11-10) was designed by fusing two thermostable xylanases through a peptide linker. The recombinant parental enzymes, xylanase 10 from fungus Bispora sp. MEY-1 (X10) and xylanase 11 from bacterium Thermobacillus xylanilyticus (X11), and their chimera were successfully expressed in Pichia pastoris (P. pastoris), purified, and characterized. Being active over a wide pH range, X11-10 chimera showed higher thermal stability, possessed a lower Km, and a higher catalytic efficiency (kcat/Km) in comparison to the parental enzymes. Also, molecular dynamics simulation (MDS) of X11-10 revealed that its active site residues were free to interact with substrate. This novel chimeric xylanase may have potential applications in different industrial processes since it can substitute two separate enzymes and therefore minimize the production costs.
Collapse
Affiliation(s)
- Ehsan Abedi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| | - Fataneh Fatemi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran.
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| | - Seyed Ehsan Ranaei Siadat
- Sobhan Recombinant Protein, No. 22, 2nd Noavari St, Pardis Technology Park, 20th Km of Damavand Road, Tehran, Iran.
| |
Collapse
|
6
|
Recombinant chimeric enzymes for lignocellulosic biomass hydrolysis. Enzyme Microb Technol 2020; 140:109647. [DOI: 10.1016/j.enzmictec.2020.109647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
|
7
|
Nath P, Sharma K, Kumar K, Goyal A. Combined SAXS and computational approaches for structure determination and binding characteristics of Chimera (CtGH1-L1-CtGH5-F194A) generated by assembling β-glucosidase (CtGH1) and a mutant endoglucanase (CtGH5-F194A) from Clostridium thermocellum. Int J Biol Macromol 2020; 148:364-377. [PMID: 31945441 DOI: 10.1016/j.ijbiomac.2020.01.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/25/2022]
Abstract
Chimera (CtGH1-L1-CtGH5-F194A) developed by fusing β-glucosidase (CtGH1) at N-terminal and endoglucanase (CtGH5-F194A) at C-terminal was structurally characterized. Its secondary structure analysis by CD showed 38% α-helix, 9.3% β-sheets and 52.7% random coils corroborating with prediction. In-silico modeled structure of Chimera comprised two modules, CtGH1 and CtGH5-F194A displaying (α/β)8 fold. Ramachandran plot of Chimera showed 99.9% residues in allowed region. Binding interaction of Chimera with cello-oligosaccharides suggested active forms of CtGH1 and CtGH5-F194A and their involvement in catalysis. MD simulation of cellohexaose bound endoglucanase module of Chimera showed favourable flexibility in loops, LA with H-bond formation with Asn510 and in loop LC relocation of Tyr687 away from active site efficiently releasing the product after catalysis. Higher short range interaction energy of Chimera, -383 kJ/mol than the individual endoglucanase, 254 kJ/mol against cellohexaose suggested higher efficient catalysis by Chimera. β-Glucosidase module of Chimera showed fluctuations in outer loops suggesting conformational changes that might be contributing to improved hydrolysis. SAXS analysis of Chimera displayed monodispersed state. Guinier analysis of Chimera showed globular shape (Rg= 3.15 ± 0.10 nm). Kratky plot confirmed fully folded and flexible behaviour in solution. Gasbor modeled structure of Chimera displayed an elongated structure with two modules having shape similar to bean-bag contour.
Collapse
Affiliation(s)
- Priyanka Nath
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
8
|
Nath P, Dhillon A, Kumar K, Sharma K, Jamaldheen SB, Moholkar VS, Goyal A. Development of bi-functional chimeric enzyme (CtGH1-L1-CtGH5-F194A) from endoglucanase (CtGH5) mutant F194A and β-1,4-glucosidase (CtGH1) from Clostridium thermocellum with enhanced activity and structural integrity. BIORESOURCE TECHNOLOGY 2019; 282:494-501. [PMID: 30897487 DOI: 10.1016/j.biortech.2019.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Site-directed mutagenesis of β-1,4-endoglucanase from family 5 glycoside hydrolase (CtGH5) from Clostridium thermocellum was performed to develop a mutant CtGH5-F194A that gave 40 U/mg specific activity against carboxymethyl cellulose, resulting 2-fold higher activity than wild-type CtGH5. CtGH5-F194A was fused with a β-1,4-glucosidase, CtGH1 from Clostridium thermocellum to develop a chimeric enzyme. The chimera (CtGH1-L1-CtGH5-F194A) expressed as a soluble protein using E. coli BL-21cells displaying 3- to 5-fold higher catalytic efficiency for endoglucanase and β-glucosidase activities. TLC analysis of hydrolysed product of CMC by chimera 1 revealed glucose as final product confirming both β-1,4-endoglucanase and β-1,4-glucosidase activities, while the products of CtGH5-F194A were cellobiose and cello-oligosaccharides. Protein melting studies of CtGH5-F194A showed melting temperature (Tm), 68 °C and of CtGH1, 79 °C, whereas, chimera showed 78 °C. The improved structural integrity, thermostability and enhanced bi-functional enzyme activities of chimera makes it potentially useful for industrial application in converting biomass to glucose and thus bioethanol.
Collapse
Affiliation(s)
- Priyanka Nath
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, India
| | - Arun Dhillon
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sumitha Banu Jamaldheen
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vijayanand Suryakant Moholkar
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, India; Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
A review on chimeric xylanases: methods and conditions. 3 Biotech 2017; 7:67. [PMID: 28452014 DOI: 10.1007/s13205-017-0660-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/14/2017] [Indexed: 12/30/2022] Open
Abstract
Multi-functional enzymes are one of the nature's solutions to facilitate metabolic pathways, thus several reactions are regulated and performed simultaneously on one polypeptide chain. Inspired by nature, artificial chimeric proteins have been designed to reduce the production costs and improve the performance. One of the interesting applications of this method is in the plant-based industries such as feed additive, waste treatment, biofuel production, and pulp and paper bleaching. In fact, the heterogeneous texture of plants needs using a combination of different enzymes to achieve an optimal quality in the manufacturing process. Given that xylans are the most abundant non-cellulosic polysaccharides in nature, xylanases are widely utilized in the mentioned industries. In this regard, several studies have been conducted to develop the relevant chimeric enzymes. Despite the successes that have been attained in this field, misfolding, functional or structural interference, and linker breakage have been reported in some cases. The present paper reviews the research to introduce the prerequisites to design an appropriate chimeric xylanase.
Collapse
|
10
|
Bifunctional recombinant cellulase-xylanase (rBhcell-xyl) from the polyextremophilic bacterium Bacillus halodurans TSLV1 and its utility in valorization of renewable agro-residues. Extremophiles 2016; 20:831-842. [PMID: 27558695 DOI: 10.1007/s00792-016-0870-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L-1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL-1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg-1 min-1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.
Collapse
|
11
|
Bouraoui H, Desrousseaux ML, Ioannou E, Alvira P, Manaï M, Rémond C, Dumon C, Fernandez-Fuentes N, O’Donohue MJ. The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:140. [PMID: 27398094 PMCID: PMC4939007 DOI: 10.1186/s13068-016-0550-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Conceptually, multi-functional enzymes are attractive because in the case of complex polymer hydrolysis having two or more activities defined by a single enzyme offers the possibility of synergy and reduced enzyme cocktail complexity. Nevertheless, multi-functional enzymes are quite rare and are generally multi-domain assemblies with each activity being defined by a separate protein module. However, a recent report described a GH51 arabinofuranosidase from Alicyclobacillus sp. A4 that displays both α-l-arabinofuranosidase and β-d-xylanase activities, which are defined by a single active site. Following on from this, we describe in detail another multi-functional GH51 arabinofuranosidase and discuss the molecular basis of multifunctionality. RESULTS THSAbf is a GH51 α-l-arabinofuranosidase. Characterization revealed that THSAbf is active up to 75 °C, stable at 60 °C and active over a broad pH range (4-7). THSAbf preferentially releases para-nitrophenyl from the l-arabinofuranoside (k cat/K M = 1050 s(-1) mM(-1)) and to some extent from d-galactofuranoside and d-xyloside. THSAbf is active on 4-O-methylglucuronoxylans from birch and beechwood (10.8 and 14.4 U mg(-1), respectively) and on sugar beet branched and linear arabinans (1.1 ± 0.24 and 1.8 ± 0.1 U mg(-1)). Further investigation revealed that like the Alicyclobacillus sp. A4 α-l-arabinofuranosidase, THSAbf also displays endo-xylanase activity, cleaving β-1,4 bonds in heteroxylans. The optimum pH for THASAbf activity is substrate dependent, but ablation of the catalytic nucleophile caused a general loss of activity, indicating the involvement of a single active center. Combining the α-l-arabinofuranosidase with a GH11 endoxylanase did not procure synergy. The molecular modeling of THSAbf revealed a wide active site cleft and clues to explain multi-functionality. CONCLUSION The discovery of single active site, multifunctional enzymes such as THSAbf opens up exciting avenues for enzyme engineering and the development of new biomass-degrading cocktails that could considerably reduce enzyme production costs.
Collapse
Affiliation(s)
- Hanen Bouraoui
- />UBMB, Université de Tunis El Manar, BP 94, 1068 Rommana, Tunisia
- />Laboratoire des Ressources Sylvo-Pastorales, Institut Sylvo-Pastoral de Tabarka, Institution de la Recherche et de l’Enseignement Supérieur Agricoles, Université de Jendouba, Jendouba, Tunisia
| | | | - Eleni Ioannou
- />CNRS, INRA, INSA, LISBP, Université de Toulouse, Toulouse, France
- />Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA Ceredigion UK
| | - Pablo Alvira
- />CNRS, INRA, INSA, LISBP, Université de Toulouse, Toulouse, France
| | - Mohamed Manaï
- />UBMB, Université de Tunis El Manar, BP 94, 1068 Rommana, Tunisia
| | - Caroline Rémond
- />INRA, FARE, Université de Reims Champagne Ardenne, 2, Esplanade Roland Garros, 51100 Reims, France
| | - Claire Dumon
- />CNRS, INRA, INSA, LISBP, Université de Toulouse, Toulouse, France
| | - Narcis Fernandez-Fuentes
- />Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA Ceredigion UK
| | | |
Collapse
|
12
|
Ribitsch D, Yebra AO, Zitzenbacher S, Wu J, Nowitsch S, Steinkellner G, Greimel K, Doliska A, Oberdorfer G, Gruber CC, Gruber K, Schwab H, Stana-Kleinschek K, Acero EH, Guebitz GM. Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules 2013; 14:1769-76. [DOI: 10.1021/bm400140u] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Doris Ribitsch
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Antonio Orcal Yebra
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Sabine Zitzenbacher
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Jing Wu
- State Key Laboratory of
Food Science and Technology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China
- School of Biotechnology
and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Ave.,
Wuxi, Jiangsu 214122, China
| | - Susanne Nowitsch
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Georg Steinkellner
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Katrin Greimel
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Ales Doliska
- Institute for Characterisation
and Processing of Polymers, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Gustav Oberdorfer
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
- Department of Biochemistry, University of Washington, 3946 West
Stevens, Seattle, United States
| | - Christian C. Gruber
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Karl Gruber
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
- Institute of Molecular
Biosciencies, University of Graz, Humboldtstrasse 50/3, 8010, Graz, Austria
| | - Helmut Schwab
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
- Institute of Molecular
Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Karin Stana-Kleinschek
- Institute for Characterisation
and Processing of Polymers, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Enrique Herrero Acero
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
| | - Georg M. Guebitz
- Enzymes and Polymers, Austrian Centre of Industrial Biotechnology ACIB, Petergasse
14, 8010, Graz, Austria
- Institute of Environmental
Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20,
3430 Tulln, Austria
| |
Collapse
|
13
|
Deutschmann R, Dekker RF. From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 2012; 30:1627-40. [DOI: 10.1016/j.biotechadv.2012.07.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 11/26/2022]
|
14
|
Rizk M, Antranikian G, Elleuche S. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes. Biochem Biophys Res Commun 2012; 428:1-5. [DOI: 10.1016/j.bbrc.2012.09.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 11/29/2022]
|
15
|
Furtado GP, Ribeiro LF, Lourenzoni MR, Ward RJ. A designed bifunctional laccase/ -1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse. Protein Eng Des Sel 2012; 26:15-23. [DOI: 10.1093/protein/gzs057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl Environ Microbiol 2012; 78:7447-54. [PMID: 22904050 DOI: 10.1128/aem.01386-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification and design of new cellulolytic enzymes with higher catalytic efficiency are a key factor in reducing the production cost of lignocellulosic bioalcohol. We report here identification of a novel β-glucosidase (Gluc1C) from Paenibacillus sp. strain MTCC 5639 and construction of bifunctional chimeric proteins based on Gluc1C and Endo5A, a β-1,4-endoglucanase isolated from MTCC 5639 earlier. The 448-amino-acid-long Gluc1C contained a GH superfamily 1 domain and hydrolyzed cellodextrin up to a five-sugar chain length, with highest efficiency toward cellobiose. Addition of Gluc1C improved the ability of Endo5A to release the reducing sugars from carboxymethyl cellulose. We therefore constructed six bifunctional chimeric proteins based on Endo5A and Gluc1C varying in the positions and sizes of linkers. One of the constructs, EG5, consisting of Endo5A-(G(4)S)(3)-Gluc1C, demonstrated 3.2- and 2-fold higher molar specific activities for β-glucosidase and endoglucanase, respectively, than Gluc1C and Endo5A alone. EG5 also showed 2-fold higher catalytic efficiency than individual recombinant enzymes. The thermal denaturation monitored by circular dichroism (CD) spectroscopy demonstrated that the fusion of Gluc1C with Endo5A resulted in increased thermostability of both domains by 5°C and 9°C, respectively. Comparative hydrolysis experiments done on alkali-treated rice straw and CMC indicated 2-fold higher release of product by EG5 than that by the physical mixture of Endo5A and Gluc1C, providing a rationale for channeling of intermediates. Addition of EG5 to a commercial enzyme preparation significantly enhanced release of reducing sugars from pretreated biomass, indicating its commercial applicability.
Collapse
|
17
|
Liu L, Wang L, Zhang Z, Guo X, Li X, Chen H. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase. BMC Biotechnol 2012; 12:28. [PMID: 22676349 PMCID: PMC3413519 DOI: 10.1186/1472-6750-12-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/07/2012] [Indexed: 12/04/2022] Open
Abstract
Background Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn) with a hyper-thermophilic Thermotoga maritima glucanase (Glu) to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. Results When expressed in E. coli BL21(DE3), the two chimeras exhibited bi-functional activities of xylanase and glucanase. The Xyn-Glu Xyn moiety had optimal reaction temperature (Topt) at 50 °C and thermal in-activation half-life (t1/2) at 50 °C for 47.6 min, compared to 47 °C and 17.6 min for the Xyn. The Glu-Xyn Xyn moiety had equivalent Topt to and shorter t1/2 (5.2 min) than the Xyn. Both chimera Glu moieties were more thermostable than the Glu, and the three enzyme Topt values were higher than 96 °C. The Glu-Xyn Glu moiety optimal pH was 5.8, compared to 3.8 for the Xyn-Glu Glu moiety and the Glu. Both chimera two moieties cooperated with each other in degrading substrates. Conclusions Domain-swapping created different effects on each moiety properties. Fusing the Glu domain at C-terminus increased the xylanase thermostability, but fusing the Glu domain at N-terminus decreased the xylanase thermostability. Fusing the Xyn domain at either terminus increased the glucanase thermostability, and fusing the Xyn domain at C-terminus shifted the glucanase pH property 2 units higher towards alkaline environments. Fusing a domain at C-terminus contributes more to enzyme catalytic activity; whereas, fusing a bigger domain at N-terminus disturbs enzyme substrate binding affinity.
Collapse
Affiliation(s)
- Liangwei Liu
- Life Science College, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, Henan, 450002, China.
| | | | | | | | | | | |
Collapse
|
18
|
Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes. Appl Biochem Biotechnol 2012; 167:1475-88. [PMID: 22383050 DOI: 10.1007/s12010-012-9618-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H(3)PO(4)-acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 °C, pH 5.4 with stability over a pH range of 5.0-6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid-acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume.
Collapse
|
19
|
Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 2011; 77:4859-66. [PMID: 21642416 DOI: 10.1128/aem.02808-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insects living on wood and plants harbor a large variety of bacterial flora in their guts for degrading biomass. We isolated a Paenibacillus strain, designated ICGEB2008, from the gut of a cotton bollworm on the basis of its ability to secrete a variety of plant-hydrolyzing enzymes. In this study, we cloned, expressed, and characterized two enzymes, β-1,4-endoglucanase (Endo5A) and β-1,4-endoxylanase (Xyl11D), from the ICGEB2008 strain and synthesized recombinant bifunctional enzymes based on Endo5A and Xyl11D. The gene encoding Endo5A was obtained from the genome of the ICGEB2008 strain by shotgun cloning. The gene encoding Xyl11D was obtained using primers for conserved xylanase sequences, which were identified by aligning xylanase sequences in other species of Paenibacillus. Endo5A and Xyl11D were overexpressed in Escherichia coli, and their optimal activities were characterized. Both Endo5A and Xyl11D exhibited maximum specific activity at 50°C and pH 6 to 7. To take advantage of this feature, we constructed four bifunctional chimeric models of Endo5A and Xyl11D by fusing the encoding genes either end to end or through a glycine-serine (GS) linker. We predicted three-dimensional structures of the four models using the I-TASSER server and analyzed their secondary structures using circular dichroism (CD) spectroscopy. The chimeric model Endo5A-GS-Xyl11D, in which a linker separated the two enzymes, yielded the highest C-score on the I-TASSER server, exhibited secondary structure properties closest to the native enzymes, and demonstrated 1.6-fold and 2.3-fold higher enzyme activity than Endo5A and Xyl11D, respectively. This bifunctional enzyme could be effective for hydrolyzing plant biomass owing to its broad substrate range.
Collapse
|
20
|
Lee DS, Wi SG, Lee YG, Cho EJ, Chung BY, Bae HJ. Characterization of a New α-l-Arabinofuranosidase from Penicillium sp. LYG 0704, and their Application in Lignocelluloses Degradation. Mol Biotechnol 2011; 49:229-39. [DOI: 10.1007/s12033-011-9396-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wang R, Xue Y, Wu X, Song X, Peng J. Enhancement of engineered trifunctional enzyme by optimizing linker peptides for degradation of agricultural by-products. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
|
23
|
Fan Z, Yuan L. Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:308-15. [PMID: 20070871 DOI: 10.1111/j.1467-7652.2009.00484.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multifunctional chimaeric hydrolases can be created by covalently linking heterologous catalytic and functional domains in a single polypeptide. Previously, we have generated a number of chimaeric lignocellulosic hydrolases that contain two to five modules [Biotechnol Bioeng (2009) 102: 1045; Appl Environ Microbiol (2009) 75: 1754]. These chimaeras closely resemble the parental enzymes in kinetics and other enzymatic properties, and some exhibit improved synergy in degrading natural substrates when compared to mixtures of parental enzymes. In addition to the applications in fermentative enzyme production, the chimaeric genes can be used in the construction of a single plant transformation binary vector carrying several genes that encode a complete set of lignocellulosic hydrolase activities. The advantages of this approach include ease in vector construction and transformation, as well as downstream plant analysis and breeding. The hydrolases sequestered in biomass feedstock can potentially assist enzymatic pretreatment and sugar conversion. Here, we report the gene expression and functional characterization of a chimaeric hemicellulase in transgenic tobacco plants. T1 transgenic plants produced up to 19-mg active enzymes per gram of total-soluble leaf proteins. The results demonstrate the feasibility of producing multifunctional lignocellulosic hydrolases in plants. Key considerations in the design, construction and plant expression of the chimaeric genes are discussed.
Collapse
Affiliation(s)
- Zhanmin Fan
- The Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
24
|
Jordan DB, Wagschal K. Properties and applications of microbial β-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Appl Microbiol Biotechnol 2010; 86:1647-58. [DOI: 10.1007/s00253-010-2538-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/28/2022]
|
25
|
Maki M, Leung KT, Qin W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 2009; 5:500-16. [PMID: 19680472 PMCID: PMC2726447 DOI: 10.7150/ijbs.5.500] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/21/2009] [Indexed: 11/05/2022] Open
Abstract
Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.
Collapse
Affiliation(s)
- Miranda Maki
- Biorefining Research Initiative, Lakehead University, Thunder Bay, Ontario, Canada
| | | | | |
Collapse
|