1
|
Naqvi RZ, Mahmood MA, Mansoor S, Amin I, Asif M. Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1273859. [PMID: 38259913 PMCID: PMC10800452 DOI: 10.3389/fpls.2023.1273859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The deployment of omics technologies has obtained an incredible boost over the past few decades with the advances in next-generation sequencing (NGS) technologies, innovative bioinformatics tools, and the deluge of available biological information. The major omics technologies in the limelight are genomics, transcriptomics, proteomics, metabolomics, and phenomics. These biotechnological advances have modernized crop breeding and opened new horizons for developing crop varieties with improved traits. The genomes of several crop species are sequenced, and a huge number of genes associated with crucial economic traits have been identified. These identified genes not only provide insights into the understanding of regulatory mechanisms of crop traits but also decipher practical grounds to assist in the molecular breeding of crops. This review discusses the potential of omics technologies for the acquisition of biological information and mining of the genes associated with important agronomic traits in important food and fiber crops, such as wheat, rice, maize, potato, tomato, cassava, and cotton. Different functional genomics approaches for the validation of these important genes are also highlighted. Furthermore, a list of genes discovered by employing omics approaches is being represented as potential targets for genetic modifications by the latest genome engineering methods for the development of climate-resilient crops that would in turn provide great impetus to secure global food security.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
2
|
Bordoloi D, Sarma D, Sarma Barua N, Das BK. Mutation induction in aromatic Joha rice of Assam for improvement of morpho-agronomic traits through M 1 to M 3 generation. Int J Radiat Biol 2023; 99:1760-1777. [PMID: 37191460 DOI: 10.1080/09553002.2023.2214197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE The popular Joha rice cultivar Kon Joha, cultivated throughout the state, was used to induce mutations. Kon Joha is short-grain aromatic rice with excellent cooking quality. The cultivar is tall and late maturing with an average yield of less than 2 tons ha-1 and is susceptible to lodging. MATERIALS AND METHODS The investigation through M1 to M3 generation aimed at improving the morpho-agronomic traits of the popular Joha rice cultivar Kon Joha. The experiments were carried out during the Sali season (winter rice) from 2017 to 2019 at Instruction-cum-Research (ICR) Farm of Assam Agricultural University, Jorhat (Assam). Dry uniform seeds of Kon Joha were subject to irradiation with 100-400 Gy of gamma rays from a 60Co source. The M1 generation used a randomized complete block design with four replications during Sali 2017. A total of 5998 M1 plant progenies were subject to screening in the M2 during Sali 2018. The M3 included 662 morpho-agronomic variants raised in the plant rows during Sali 2019, and 66 mutants were confirmed. RESULTS The M1 of Kon Joha registered a reduction in germination, seedling height, pollen/spikelet fertility and plant survival at 400 Gy. All the traits showed highly significant differences among the doses in the M2 generation. The shift in trait means was in both directions as influenced by the genotype and mutagen dose. The 66 mutants exhibited significant differences for all traits in the M3 generation. Fifty mutants were shorter than the parent Kon Joha. The GCV and PCV estimates were high (>20%) for grain yield, biological yield, productive tillers, filled grains, and average panicle weight. All the traits except panicle length exhibited high heritability coupled with high genetic advance, suggesting the predominance of additive gene action and the effectiveness of simple selection. Grain yield showed a significant positive correlation with plant height, panicle length, filled grains, spikelet fertility, the average panicle weight and harvest index in the mutant population. CONCLUSIONS Thus, mutation induction in Kon Joha proved useful in inducing desirable changes in plant architectural traits. The study further emphasized the short stature high yielding mutants with strong aroma for wide-scale testing in the state.
Collapse
Affiliation(s)
- Dibosh Bordoloi
- Krishi Vigyan Kendra, Assam Agricultural University, Karimganj, Assam
| | - Debojit Sarma
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam
| | - Nagendra Sarma Barua
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam
| | - Bikram Kishore Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Maharashtra
| |
Collapse
|
3
|
Dossa EN, Shimelis H, Mrema E, Shayanowako ATI, Laing M. Genetic resources and breeding of maize for Striga resistance: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1163785. [PMID: 37235028 PMCID: PMC10206272 DOI: 10.3389/fpls.2023.1163785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/07/2023] [Indexed: 05/28/2023]
Abstract
The potential yield of maize (Zea mays L.) and other major crops is curtailed by several biotic, abiotic, and socio-economic constraints. Parasitic weeds, Striga spp., are major constraints to cereal and legume crop production in sub-Saharan Africa (SSA). Yield losses reaching 100% are reported in maize under severe Striga infestation. Breeding for Striga resistance has been shown to be the most economical, feasible, and sustainable approach for resource-poor farmers and for being environmentally friendly. Knowledge of the genetic and genomic resources and components of Striga resistance is vital to guide genetic analysis and precision breeding of maize varieties with desirable product profiles under Striga infestation. This review aims to present the genetic and genomic resources, research progress, and opportunities in the genetic analysis of Striga resistance and yield components in maize for breeding. The paper outlines the vital genetic resources of maize for Striga resistance, including landraces, wild relatives, mutants, and synthetic varieties, followed by breeding technologies and genomic resources. Integrating conventional breeding, mutation breeding, and genomic-assisted breeding [i.e., marker-assisted selection, quantitative trait loci (QTL) analysis, next-generation sequencing, and genome editing] will enhance genetic gains in Striga resistance breeding programs. This review may guide new variety designs for Striga-resistance and desirable product profiles in maize.
Collapse
Affiliation(s)
- Emeline Nanou Dossa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Emmanuel Mrema
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Tanzania Agricultural Research Institute, Tumbi Center, Tabora, Tanzania
| | | | - Mark Laing
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
4
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Sircar S, Parekh N. Functional characterization of drought-responsive modules and genes in Oryza sativa: a network-based approach. Front Genet 2015; 6:256. [PMID: 26284112 PMCID: PMC4519691 DOI: 10.3389/fgene.2015.00256] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/16/2015] [Indexed: 01/18/2023] Open
Abstract
Drought is one of the major environmental stress conditions affecting the yield of rice across the globe. Unraveling the functional roles of the drought-responsive genes and their underlying molecular mechanisms will provide important leads to improve the yield of rice. Co-expression relationships derived from condition-dependent gene expression data is an effective way to identify the functional associations between genes that are part of the same biological process and may be under similar transcriptional control. For this purpose, vast amount of freely available transcriptomic data may be used. In this study, we consider gene expression data for different tissues and developmental stages in response to drought stress. We analyze the network of co-expressed genes to identify drought-responsive genes modules in a tissue and stage-specific manner based on differential expression and gene enrichment analysis. Taking cues from the systems-level behavior of these modules, we propose two approaches to identify clusters of tightly co-expressed/co-regulated genes. Using graph-centrality measures and differential gene expression, we identify biologically informative genes that lack any functional annotation. We show that using orthologous information from other plant species, the conserved co-expression patterns of the uncharacterized genes can be identified. Presence of a conserved neighborhood enables us to extrapolate functional annotation. Alternatively, we show that single 'guide-gene' approach can help in understanding tissue-specific transcriptional regulation of uncharacterized genes. Finally, we confirm the predicted roles of uncharacterized genes by the analysis of conserved cis-elements and explain the possible roles of these genes toward drought tolerance.
Collapse
Affiliation(s)
- Sanchari Sircar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad, India
| |
Collapse
|
6
|
Jiang SY, Vanitha J, Bai Y, Ramachandran S. Identification and molecular characterization of tissue-preferred rice genes and their upstream regularly sequences on a genome-wide level. BMC PLANT BIOLOGY 2014; 14:331. [PMID: 25428432 PMCID: PMC4248441 DOI: 10.1186/s12870-014-0331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/11/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gene upstream regularly sequences (URSs) can be used as one of the tools to annotate the biological functions of corresponding genes. In addition, tissue-preferred URSs are frequently used to drive the transgene expression exclusively in targeted tissues during plant transgenesis. Although many rice URSs have been molecularly characterized, it is still necessary and valuable to identify URSs that will benefit plant transformation and aid in analyzing gene function. RESULTS In this study, we identified and characterized root-, seed-, leaf-, and panicle-preferred genes on a genome-wide level in rice. Subsequently, their expression patterns were confirmed through quantitative real-time RT-PCR (qRT-PCR) by randomly selecting 9candidate tissue-preferred genes. In addition, 5 tissue-preferred URSs were characterized by investigating the URS::GUS transgenic plants. Of these URS::GUS analyses, the transgenic plants harboring LOC_Os03g11350 URS::GUS construct showed the GUS activity only in young pollen. In contrast, when LOC_Os10g22450 URS was used to drive the reporter GUS gene, the GUS activity was detected only in mature pollen. Interestingly, the LOC_Os10g34360 URS was found to be vascular bundle preferred and its activities were restricted only to vascular bundles of leaves, roots and florets. In addition, we have also identified two URSs from genes LOC_Os02G15090 and LOC_Os06g31070 expressed in a seed-preferred manner showing the highest expression levels of GUS activities in mature seeds. CONCLUSION By genome-wide analysis, we have identified tissue-preferred URSs, five of which were further characterized using transgenic plants harboring URS::GUS constructs. These data might provide some evidence for possible functions of the genes and be a valuable resource for tissue-preferred candidate URSs for plant transgenesis.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Jeevanandam Vanitha
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Yanan Bai
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| | - Srinivasan Ramachandran
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|
7
|
Jiang SY, Ma A, Ramamoorthy R, Ramachandran S. Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol Evol 2014; 5:2032-50. [PMID: 24121498 PMCID: PMC3845633 DOI: 10.1093/gbe/evt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression profiling is one of the most important tools for dissecting biological functions of genes and the upregulation or downregulation of gene expression is sufficient for recreating phenotypic differences. Expression divergence of genes significantly contributes to phenotypic variations. However, little is known on the molecular basis of expression divergence and evolution among rice genotypes with contrasting phenotypes. In this study, we have implemented an integrative approach using bioinformatics and experimental analyses to provide insights into genomic variation, expression divergence, and evolution between salinity-sensitive rice variety Nipponbare and tolerant rice line Pokkali under normal and high salinity stress conditions. We have detected thousands of differentially expressed genes between these two genotypes and thousands of up- or downregulated genes under high salinity stress. Many genes were first detected with expression evidence using custom microarray analysis. Some gene families were preferentially regulated by high salinity stress and might play key roles in stress-responsive biological processes. Genomic variations in promoter regions resulted from single nucleotide polymorphisms, indels (1–10 bp of insertion/deletion), and structural variations significantly contributed to the expression divergence and regulation. Our data also showed that tandem and segmental duplication, CACTA and hAT elements played roles in the evolution of gene expression divergence and regulation between these two contrasting genotypes under normal or high salinity stress conditions.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
8
|
Kato-Noguchi H, Peters RJ. The role of momilactones in rice allelopathy. J Chem Ecol 2013; 39:175-85. [PMID: 23385366 DOI: 10.1007/s10886-013-0236-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/21/2012] [Accepted: 11/16/2012] [Indexed: 01/16/2023]
Abstract
Large field screening programs and laboratory experiments in many countries have indicated that rice is allelopathic and releases allelochemical(s) into its environment. A number of compounds, such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic acids, terpenes, and indoles, have been identified as potential rice allelochemicals. However, the studies reviewed here demonstrate that the labdane-related diterpenoid momilactones are the most important, with momilactone B playing a particularly critical role. Rice plants secrete momilactone B from their roots into the neighboring environments over their entire life cycle at phytotoxic levels, and momilactone B seems to account for the majority of the observed rice allelopathy. In addition, genetic studies have shown that selective removal of the momilactones only from the complex mixture found in rice root exudates significantly reduces allelopathy, demonstrating that these serve as allelochemicals, the importance of which is reflected in the presence of a dedicated momilactone biosynthetic gene cluster in the rice genome.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | | |
Collapse
|