1
|
Influence of tie line length and volume ratio on the partition behavior of peripheral blood and conjugated CD34 antibody in polymer-polymer aqueous two-phase systems. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
3
|
Roque ACA, Pina AS, Azevedo AM, Aires‐Barros R, Jungbauer A, Di Profio G, Heng JYY, Haigh J, Ottens M. Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnol J 2020; 15:e1900274. [DOI: 10.1002/biot.201900274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Ana Sofia Pina
- UCIBIOChemistry DepartmentNOVA School of Science and Technology Caparica 2829‐516 Portugal
| | - Ana Margarida Azevedo
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Raquel Aires‐Barros
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 Vienna Muthgasse 1190 Austria
| | - Gianluca Di Profio
- National Research Council of Italy (CNR) – Institute on Membrane Technology (ITM) via P. Bucci Cubo 17/C Rende (CS) 87036 Italy
| | - Jerry Y. Y. Heng
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Jonathan Haigh
- FUJIFILM Diosynth Biotechnologies UK Limited Belasis Avenue Billingham TS23 1LH UK
| | - Marcel Ottens
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| |
Collapse
|
4
|
Luby CJ, Coughlin BP, Mace CR. Enrichment and Recovery of Mammalian Cells from Contaminated Cultures Using Aqueous Two-Phase Systems. Anal Chem 2018; 90:2103-2110. [PMID: 29286236 DOI: 10.1021/acs.analchem.7b04352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This Article describes a density-based method for removing contaminants, including microorganisms and nonviable cells, from mammalian cell cultures using an aqueous two-phase system (ATPS). The properties of a 7% w/w polyethylene glycol (PEG)-11% w/w Ficoll ATPS can be tuned to prepare a biocompatible system that removes contaminants with little to no adverse effects on the viability or growth of the cultured cells after treatment. This system can be used to enrich cell culture populations for viable cells and to reduce the number of microorganism contaminants in a culture, which increases the chances of subsequent antibiotic treatments being successful. We test the effectiveness of our method in model contaminated cultures of both adherent (HeLa) and suspension (HL-60 II) mammalian cells contaminated with bacteria (E. coli) and yeast (S. cerevisiae). An average of 70.2 ± 4.6% of HeLa cells added to the system are subsequently recovered, and 55.9 ± 2.1% of HL-60 II cells are recovered. After sedimenting to the interface of the ATPS, these cells have an average viability of 98.0 ± 0.2% and 95.3 ± 2.2%, respectively. By removing unwanted cells, desired cell populations can be recovered, and cultures that would otherwise need to be discarded can continue to be used.
Collapse
Affiliation(s)
- Christopher J Luby
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Benjamin P Coughlin
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
|
6
|
Soares RRG, Silva DFC, Fernandes P, Azevedo AM, Chu V, Conde JP, Aires-Barros MR. Miniaturization of aqueous two-phase extraction for biological applications: From micro-tubes to microchannels. Biotechnol J 2016; 11:1498-1512. [PMID: 27624685 DOI: 10.1002/biot.201600356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
Abstract
Aqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels). The objective of this review is to give insight into the state of the art at both microtube and microchannel-scale and to analyze whether miniaturization is currently a competing or divergent technology in a field of applications including bioseparation, bioanalytics, enhanced fermentation processes, catalysis, high-throughput screening and physical/chemical compartmentalization. From our perspective, both approaches are worthy of investigation and, depending on the application, it is likely that either (i) one of the approaches will eventually become obsolete in particular research areas such as purification at the preparative scale or high-throughput screening applications; or (ii) both approaches will function as complementing techniques within the bioanalytics field.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel F C Silva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Zimmermann S, Gretzinger S, Scheeder C, Schwab ML, Oelmeier SA, Osberghaus A, Gottwald E, Hubbuch J. High-throughput cell quantification assays for use in cell purification development - enabling technologies for cell production. Biotechnol J 2016; 11:676-86. [DOI: 10.1002/biot.201500577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sarah Zimmermann
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
| | - Sarah Gretzinger
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
| | - Christian Scheeder
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
| | - Marie-Luise Schwab
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
- DIARECT AG, Department of Quality Assurance and Quality Control; Freiburg Germany
| | - Stefan A. Oelmeier
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Bioprocess & Pharmaceutical Development; Biberach Germany
| | - Anna Osberghaus
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
| | - Eric Gottwald
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 5); Eggenstein-Leopoldshafen Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering (MAB); Karlsruhe Germany
| |
Collapse
|
8
|
|
9
|
Rodrigues GMC, Rodrigues CAV, Fernandes TG, Diogo MM, Cabral JMS. Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies. Biotechnol J 2015; 10:1103-14. [PMID: 25851544 DOI: 10.1002/biot.201400535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023]
Abstract
Human pluripotent stem cells (hPSCs) have the potential to revolutionize cell-replacement therapies because of their ability to self renew and differentiate into nearly every cell type in the body. However, safety concerns have delayed the clinical translation of this technology. One cause for this is the capacity that hPSCs have to generate tumors after transplantation. Because of the challenges associated with achieving complete differentiation into clinically relevant cell types, the development of safe and efficient strategies for purifying committed cells is essential for advancing hPSC-based therapies. Several purification strategies have now succeeded in generating non-tumorigenic and homogeneous cell-populations. These techniques typically enrich for cells by either depleting early committed populations from teratoma-initiating hPSCs or by positively selecting cells after differentiation. Here we review the working principles behind separation methods that have facilitated the safe and controlled application of hPSC-derived cells in laboratory settings and pre-clinical research. We underscore the need for improving and integrating purification strategies within differentiation protocols in order to unlock the therapeutic potential of hPSCs.
Collapse
Affiliation(s)
- Gonçalo M C Rodrigues
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Almeida M, Garc�a-Montero AC, Orfao A. Cell Purification: A New Challenge for Biobanks. Pathobiology 2015; 81:261-275. [DOI: 10.1159/000358306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
González-González M, Rito-Palomares M. Application of affinity aqueous two-phase systems for the fractionation of CD133+stem cells from human umbilical cord blood. J Mol Recognit 2015; 28:142-7. [DOI: 10.1002/jmr.2374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/07/2014] [Accepted: 03/17/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Mirna González-González
- Centro de Biotecnología FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey Nuevo León 64849 México
| | - Marco Rito-Palomares
- Centro de Biotecnología FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey Nuevo León 64849 México
| |
Collapse
|
12
|
Silva MF, Fernandes-Platzgummer A, Aires-Barros MR, Azevedo AM. Integrated purification of monoclonal antibodies directly from cell culture medium with aqueous two-phase systems. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
González-González M, Rito-Palomares M, Méndez Quintero O. Partition behavior of CD133+stem cells from human umbilical cord blood in aqueous two-phase systems: In route to establish novel stem cell primary recovery strategies. Biotechnol Prog 2014; 30:700-7. [DOI: 10.1002/btpr.1875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/13/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Mirna González-González
- Centro de Biotecnología-FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey NL 64849 México
| | - Marco Rito-Palomares
- Centro de Biotecnología-FEMSA; Tecnológico de Monterrey; Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey NL 64849 México
| | - Olivia Méndez Quintero
- Hospital Metropolitano “Dr. Bernardo Sepúlveda”; Ave. López Mateos 4600 San Nicolás de los Garza NL 66480 México
| |
Collapse
|
14
|
Diogo MM, da Silva CL, Cabral JMS. Separation Technologies for Stem Cell Bioprocessing. CELL ENGINEERING 2014. [DOI: 10.1007/978-94-007-7196-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Van Pham P, Bui ANT, Trinh NL, Phi LT, Phan NK, Vu NB. A comparison of umbilical cord blood-derived endothelial progenitor and mononuclear cell transplantation for the treatment of acute hindlimb ischemia. BIOMEDICAL RESEARCH AND THERAPY 2014. [DOI: 10.7603/s40730-014-0003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Emerging technologies for the integration and intensification of downstream bioprocesses. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
González-González M, Rito-Palomares M. Aqueous two-phase systems strategies to establish novel bioprocesses for stem cells recovery. Crit Rev Biotechnol 2013; 34:318-27. [DOI: 10.3109/07388551.2013.794125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Rodrigues MN, De Oliveira GB, De Paula VV, Rodrigues Silva A, De Assis Neto AC, Miglino MA, De Oliveira MF. Microscopy of the umbilical cord of rock cavies-Kerodon rupestrisWied, 1820 (Rodenta, Caviidae). Microsc Res Tech 2013; 76:419-22. [DOI: 10.1002/jemt.22182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/13/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Marcio Nogueira Rodrigues
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science (FMVZ-USP); São Paulo University (USP), Cidade Universitária; Av. Prof. Dr. Orlando Marques de Paiva 87; São Paulo SP; 05508270; Brazil
| | - Gleidson Benevides De Oliveira
- Department of Animal Science; Federal Rural of Semi Arid University; Mossoró; Rio Grande do Norte-Brazil. Av. Francisco Mota; 572; costa e silva; 59625900; RN Mossoró; Brazil
| | - Valéria Veras De Paula
- Department of Animal Science; Federal Rural of Semi Arid University; Mossoró; Rio Grande do Norte-Brazil. Av. Francisco Mota; 572; costa e silva; 59625900; RN Mossoró; Brazil
| | - Alexandre Rodrigues Silva
- Department of Animal Science; Federal Rural of Semi Arid University; Mossoró; Rio Grande do Norte-Brazil. Av. Francisco Mota; 572; costa e silva; 59625900; RN Mossoró; Brazil
| | - Antonio Chaves De Assis Neto
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science (FMVZ-USP); São Paulo University (USP), Cidade Universitária; Av. Prof. Dr. Orlando Marques de Paiva 87; São Paulo SP; 05508270; Brazil
| | - Maria Angelica Miglino
- Department of Surgery; Faculty of Veterinary Medicine and Animal Science (FMVZ-USP); São Paulo University (USP), Cidade Universitária; Av. Prof. Dr. Orlando Marques de Paiva 87; São Paulo SP; 05508270; Brazil
| | - Moacir Franco De Oliveira
- Department of Animal Science; Federal Rural of Semi Arid University; Mossoró; Rio Grande do Norte-Brazil. Av. Francisco Mota; 572; costa e silva; 59625900; RN Mossoró; Brazil
| |
Collapse
|
19
|
Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J. Cell separation: Terminology and practical considerations. J Tissue Eng 2012; 4:2041731412472690. [PMID: 23440031 PMCID: PMC3578272 DOI: 10.1177/2041731412472690] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of 'purity', 'recovery' and 'viability' are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike.
Collapse
Affiliation(s)
- Matthew J Tomlinson
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
20
|
Bibliography. Cardiovascular medicine (CM). Current world literature. Curr Opin Pediatr 2012; 24:656-60. [PMID: 22954957 DOI: 10.1097/mop.0b013e328358bc78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Diogo MM, da Silva CL, Cabral JMS. Separation technologies for stem cell bioprocessing. Biotechnol Bioeng 2012; 109:2699-709. [PMID: 22887094 DOI: 10.1002/bit.24706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 02/06/2023]
Abstract
Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies.
Collapse
Affiliation(s)
- Maria Margarida Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|
22
|
Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M. Aqueous two-phase affinity partitioning systems: Current applications and trends. J Chromatogr A 2012; 1244:1-13. [DOI: 10.1016/j.chroma.2012.04.077] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/16/2012] [Accepted: 04/25/2012] [Indexed: 12/01/2022]
|
23
|
González-González M, Mayolo-Deloisa K, Rito-Palomares M. PEGylation, detection and chromatographic purification of site-specific PEGylated CD133-Biotin antibody in route to stem cell separation. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:182-6. [DOI: 10.1016/j.jchromb.2012.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|