1
|
Greenfield L, Brantley M, Geoffroy P, Mitchell J, DeWitt D, Zhang F, Mulukutla BC. Metabolic engineering of CHO cells towards cysteine prototrophy and systems analysis of the ensuing phenotype. Metab Eng 2024; 84:128-144. [PMID: 38908817 DOI: 10.1016/j.ymben.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Chinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (βME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and βME levels, were able to proliferate in the HCY-free, βME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to βME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.
Collapse
Affiliation(s)
- Laura Greenfield
- Upstream Process Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Mariah Brantley
- Upstream Process Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Pauline Geoffroy
- Upstream Process Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Jeffrey Mitchell
- Cell Line Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Dylan DeWitt
- Analytical Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | - Fang Zhang
- Analytical Research & Development, Pfizer Inc, 1 Burtt Road, Andover, MA, 01810, USA
| | | |
Collapse
|
2
|
Caram DA, Inserra PIF, Vitullo AD, Leopardo NP. Autophagy favors survival of corpora lutea during the long-lasting pregnancy of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). Sci Rep 2024; 14:11220. [PMID: 38755206 PMCID: PMC11099099 DOI: 10.1038/s41598-024-61478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
The corpus luteum (CL) is a transient endocrine gland that plays a crucial role in establishing and maintaining pregnancy. Although autophagy and apoptosis have been suggested as cooperative mechanisms, their interaction within the CL of pregnant mammals has not been thoroughly investigated. To understand the collaborative function of autophagy and apoptosis in the CL, we analyzed both mechanisms during pregnancy in the South American plains vizcacha, Lagostomus maximus. This rodent undergoes a decline in progesterone levels during mid-gestation, a reactivation of the hypothalamus-hypophysis-gonadal axis, and the incorporation of new functional secondary CL. Our analysis of autophagy markers BECLIN 1 (BECN1), SEQUESTOSOME1 (SQSTM1), Microtubule-associated protein light chain 3 (LC3B), and lysosomal-associated membrane protein 1 (LAMP1) and anti- and pro-apoptotic markers BCL2 and ACTIVE CASPASE 3 (A-C3) revealed interactive behaviors between both processes. Healthy primary and secondary CL exhibited positive expression of BECN1, SQSTM1, LC3B, and LAMP1, while regressed CL displayed enhanced expression of these autophagy markers along with nuclear A-C3. Transmission electron microscopy revealed a significant formation of autophagic vesicles in regressed CL during full-term pregnancy, whereas healthy CL exhibited a low number of autophagy vesicles. The co-localization between LC3B and SQSTM1 and LC3B with LAMP1 was observed in both healthy and regressed CL during pregnancy, while co-localization of BECN1 and BCL2 was only detected in healthy CL. LC3B and ACTIVE CASPASE 3 co-localization were detected in a subset of luteal cells within the regressing CL. We propose that autophagy could act as a survival mechanism in the CL, allowing the pregnancy to progress until full-term, while also serving as a mechanism to eliminate remnants of regressed CL, thereby providing the necessary space for subsequent follicular maturation.
Collapse
Affiliation(s)
- Daira A Caram
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia P Leopardo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Ma B, Hu Y, Zhu J, Zheng Z, Ye J. Research on the role of cellular autophagy in the sensitivity of human tongue cancer cells to radiotherapy and chemotherapy. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101430. [PMID: 36878357 DOI: 10.1016/j.jormas.2023.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE This paper aims to investigate the role of cisplatin-induced autophagy in human tongue squamous carcinoma Tca8113 cells. METHODS After inhibiting the expression of autophagic proteins with different autophagy inhibitors (3-methyladenine, chloroquine), the sensitivity of human tongue squamous cell carcinoma (Tca8113) cells to killing by gradient concentrations of cisplatin and gradient doses of radiation was detected using a colony formation assay. Further, the changes of autophagy expression in Tca8113 cells that had been treated with cisplatin and radiation were detected using western immunoblot, GFP-LC3 fluorescence and transmission electron microscopy. RESULTS The sensitivity of Tca8113 cells to cisplatin and radiation was significantly increased (P < 0.05) after reducing autophagy expression using different autophagy inhibitors. Meanwhile, the expression of autophagy in the cells was significantly increased by cisplatin and radiation treatment. CONCLUSION Tca8113 cells upregulated autophagy under the effect of either radiation or cisplatin, and the sensitivity of Tca8113 cells to cisplatin and radiation could be improved by inhibiting autophagy using multiple pathways.
Collapse
Affiliation(s)
- Ben Ma
- Department of Oral and Maxillofacial Surgery, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Yong Hu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jiadong Zhu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Zeguang Zheng
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Beesabathuni NS, Park S, Shah PS. Quantitative and temporal measurement of dynamic autophagy rates. Autophagy 2023; 19:1164-1183. [PMID: 36026492 PMCID: PMC10012960 DOI: 10.1080/15548627.2022.2117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a multistep degradative process that is essential for maintaining cellular homeostasis and is often dysregulated during disease. Systematically quantifying flux through this pathway is critical for gaining fundamental insights and effectively modulating this process. Established methods to quantify flux use steady-state measurements, which provide limited information about the perturbation and the cellular response. We present a theoretical and experimental framework to measure autophagic steps in the form of rates under non-steady-state conditions. We use this approach to measure temporal responses to rapamycin and wortmannin treatments, two commonly used autophagy modulators. We quantified changes in autophagy rates in as little as 10 min, which can establish direct mechanisms for autophagy perturbation before feedback begins. We identified concentration-dependent effects of rapamycin on the initial and temporal progression of autophagy rates. We also found variable recovery time from wortmannin's inhibition of autophagy, which is further accelerated by rapamycin. Furthermore, we applied this approach to study the effect of serum and glutamine starvation on autophagy. Serum starvation led to a rapid and transient increase in all the rates. Glutamine starvation led to a decrease in the rates on a longer timescale. In summary, this new approach enables the quantification of autophagy flux with high sensitivity and temporal resolution and facilitates a comprehensive understanding of this process.
Collapse
Affiliation(s)
| | - Soyoon Park
- Department of Microbiology and Molecular Genetics, University of California, Davis One Shields Ave, Davis, CA, USA
| | - Priya S Shah
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA.,Department of Microbiology and Molecular Genetics, University of California, Davis One Shields Ave, Davis, CA, USA
| |
Collapse
|
6
|
Zhang D, Cui Y, Zhao M, Zheng X, Li C, Wei J, Wang K, Cui J. Orexin-A exerts neuroprotective effect in experimental intracerebral hemorrhage by suppressing autophagy via OXR1-mediated ERK/mTOR signaling pathway. Front Cell Neurosci 2022; 16:1045034. [PMID: 36619670 PMCID: PMC9815810 DOI: 10.3389/fncel.2022.1045034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Orexin-A (OXA) is a polypeptide produced in the hypothalamus, which binds to specific receptors and exerts multiple physiological effects. Autophagy plays a vital role in early brain injury (EBI) after intracerebral hemorrhage (ICH). However, the relationship between OXA and autophagy after ICH has not been confirmed. Methods In this study, the protective role of OXA was investigated in a model of hemin-induced injury in PC12 cells and blood-injection ICH model in rats, and its potential molecular mechanism was clarified. Neurobehavioral tests, brain water content, and pathologic morphology were assessed after ICH. Cell survival rate was determined using Cell Counting Kit-8 (CCK-8), while apoptosis was detected using flow cytometry. The autophagy protein LC3 that was originally identified as microtubule-associated protein 1 light 3 was evaluated by immunohistochemistry. The ultrastructural changes of cells following ICH were observed by transmission electron microscopy. Western blotting was performed to determine the expression levels of LC3, p62/SQSTM1 (p62), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), total extracellular signal-regulated kinase 1/2 (t-ERK1/2), mammalian target of rapamycin (mTOR), and phosphorylated mammalian target of rapamycin (p-mTOR). Results OXA treatment significantly improved neurofunctional outcomes, reduced brain edema, and alleviated neuronal apoptosis. OXA administration upregulated p-mTOR and p62, while it downregulated p-ERK1/2 and LC3; this effect was reversed by the orexin receptor 1 (OXR1) antagonist SB-334867. Conclusions This study demonstrates that OXA suppresses autophagy via the OXR1-mediated ERK/mTOR signaling pathway to exert neuroprotective effects, and it might provide a novel therapeutic approach in patients suffering from ICH.
Collapse
Affiliation(s)
- Dexin Zhang
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Ying Cui
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Manman Zhao
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, China
| | - Xuecheng Zheng
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Chunyan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingbo Wei
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, Shijiazhuang, China,Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China,*Correspondence: Jianzhong Cui,
| |
Collapse
|
7
|
Schulze M, Kumar Y, Rattay M, Niemann J, Wijffels RH, Martens D. Transcriptomic analysis reveals mode of action of butyric acid supplementation in an intensified CHO cell fed‐batch process. Biotechnol Bioeng 2022; 119:2359-2373. [PMID: 35641884 PMCID: PMC9545226 DOI: 10.1002/bit.28150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022]
Abstract
Process intensification is increasingly used in the mammalian biomanufacturing industry. The key driver of this trend is the need for more efficient and flexible production strategies to cope with the increased demand for biotherapeutics predicted in the next years. Therefore, such intensified production strategies should be designed, established, and characterized. We established a CHO cell process consisting of an intensified fed‐batch (iFB), which is inoculated by an N‐1 perfusion process that reaches high cell concentrations (100 × 106 c ml−1). We investigated the impact of butyric acid (BA) supplementation in this iFB process. Most prominently, higher cellular productivities of more than 33% were achieved, thus 3.5 g L−1 of immunoglobulin G (IgG) was produced in 6.5 days. Impacts on critical product quality attributes were small. To understand the biological mechanisms of BA in the iFB process, we performed a detailed transcriptomic analysis. Affected gene sets reflected concurrent inhibition of cell proliferation and impact on histone modification. These translate into subsequently enhanced mechanisms of protein biosynthesis: enriched regulation of transcription, messenger RNA processing and transport, ribosomal translation, and cellular trafficking of IgG intermediates. Furthermore, we identified mutual tackling points for optimization by gene engineering. The presented strategy can contribute to meet future requirements in the continuously demanding field of biotherapeutics production.
Collapse
Affiliation(s)
- Markus Schulze
- Product Development Cell Culture Technologies, Sartorius Stedim Biotech GmbHAugust‐Spindler‐Str. 1137079GöttingenGermany
- Bioprocess EngineeringWageningen UniversityPO Box 166700 AAWageningenNetherlands
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbHJakob‐Stadler‐Platz 7D‐78467KonstanzGermany
| | - Merle Rattay
- Corporate Research Advanced Cell Biology, Sartorius Stedim Cellca GmbHMarie‐Goeppert‐Mayer‐Str. 989081Ulm
| | - Julia Niemann
- Corporate Research BioProcessing Upstream, Sartorius Stedim Biotech GmbHAugust‐Spindler‐Str. 1137079GöttingenGermany
| | - Rene H. Wijffels
- Bioprocess EngineeringWageningen UniversityPO Box 166700 AAWageningenNetherlands
- Biosciences and AquacultureNord UniversityN‐8049BodøNorway
| | - Dirk Martens
- Bioprocess EngineeringWageningen UniversityPO Box 166700 AAWageningenNetherlands
| |
Collapse
|
8
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
9
|
Zhang Y, Gao R, Zhang L, Geng Y, Chen Q, Chen X, Liu X, Mu X, Ding Y, Wang Y, He J. AMPK/mTOR downregulated autophagy enhances aberrant endometrial decidualization in folate-deficient pregnant mice. J Cell Physiol 2021; 236:7376-7389. [PMID: 33959973 DOI: 10.1002/jcp.30408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Existing evidence suggests that adverse pregnancy outcomes are closely related to dietary factors. Folate plays an important role in neural tube formation and fetal growth, folate deficiency is a major risk factor of birth defects. Our early studies showed that folate deficiency could impair enddecidualization, however, the mechanism is still unclear. Dysfunctional autophagy is associated with many diseases. Here, we aimed to evaluate the adverse effect of folate deficiency on endometrial decidualization, with a particular focus on endometrial cell autophagy. Mice were fed with no folate diet in vivo and the mouse endometrial stromal cell was cultured in a folate-free medium in vitro. The decrease of the number of endometrial autophagosomes and the protein expressions of autophagy in the folate-deficient group indicated that autophagosome formation, autophagosome-lysosome fusion, and lysosomal degradation were inhibited. Autophagic flux examination using mCherry-GFP-LC3 transfection showed that the fusion of autophagosomes with lysosomes was inhibited by folate deficiency. Autophagy inducer rapamycin could reverse the impairment of folate deficiency on endometrial decidualization. Moreover, folate deficiency could reduce autophagy by disrupting AMPK/mTOR signaling, resulting in aberrant endometrial decidualization and adverse pregnancy outcomes. Further co-immunoprecipitation examination showed that decidual marker protein Hoxa10 could interact with autophagic marker protein Cathepsin L, and the interaction was notably reduced by folate deficiency. In conclusion, AMPK/mTOR downregulated autophagy was essential for aberrant endometrial decidualization in early pregnant mice, which could result in adverse pregnancy outcomes. This provided some new clues for understanding the causal mechanisms of birth defects induced by folate deficiency.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Lei Zhang
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Yanqing Geng
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
- College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Qiutong Chen
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xinyi Mu
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
- College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Yingxiong Wang
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
- College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, College of Public Health and Administration, Chongqing Medical University, Chongqing, PR China
- Joint International Research, Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
10
|
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 2020; 43:107552. [DOI: 10.1016/j.biotechadv.2020.107552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
|
11
|
A dual death/survival role of autophagy in the adult ovary of Lagostomus maximus (Mammalia- Rodentia). PLoS One 2020; 15:e0232819. [PMID: 32469908 PMCID: PMC7259749 DOI: 10.1371/journal.pone.0232819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Follicular atresia is a cell death event that occurs in the great majority of follicles before ovulation in the mature mammalian ovary. Germ cell loss has been mainly associated to apoptosis although autophagy also seems to be at play. Aimed to increase our understanding on the possible cooperating role of autophagy and apoptosis in follicular atresia and/or follicular survival, we analyzed both programmed cell death mechanisms in a rodent model, the South American plains vizcacha, Lagostomus maximus. Female vizcacha shows highly suppressed apoptosis-dependent follicular atresia in the adult ovary, with continuous folliculogenesis and massive polyovulation. This strategy of massive ovulation requires a permanent remodeling of the ovarian architecture to maintain the availability of quiescent primordial follicles throughout the individual's reproductive lifespan. We report here our analysis of autophagy (BECN1, LAMP1 and LC3B-I/II) and apoptosis (BCL2 and ACTIVE CASPASE-3) markers which revealed interactive behaviors between both processes, with autophagy promoting survival or cell death depending on the ovarian structure. Strong BECN1, LC3B-II and LAMP1 staining was observed in atretic follicles and degenerating corpora lutea that also expressed nuclear ACTIVE CASPASE-3. Healthy follicles showed a slight expression of autophagy proteins but a strong expression of BCL2 and no detectable ACTIVE CASPASE-3. Transmission electron microscopy revealed a high formation of autophagosomes, autolysosomes and lysosomes in atretic follicles and degenerating corpora lutea and a low number of autophagic vesicles in normal follicles. The co-expression of LC3B-BECN1, LC3B-LAMP1 and LC3B-ACTIVE CASPASE-3 was only detected in atretic follicles and degenerating corpora lutea, while co-expression of BCL2-BECN1 was only observed in normal follicles. We propose that autophagy could act as a mechanism to eliminate altered follicles and remnant corpora lutea providing the necessary space for maturation of primordial follicles that continuously enter the growing follicular pool to sustain massive ovulation.
Collapse
|
12
|
Capella Roca B, Alarcón Miguez A, Keenan J, Suda S, Barron N, O’Gorman D, Doolan P, Clynes M. Zinc supplementation increases protein titer of recombinant CHO cells. Cytotechnology 2019; 71:915-924. [PMID: 31396753 PMCID: PMC6787129 DOI: 10.1007/s10616-019-00334-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
In order to study the impact of zinc and copper on the titer levels of mAb and recombinant protein in CHO cells, the IgG-expressing (DP12) and EPO-expressing (SK15) cell lines were cultured in chemically defined media with increasing concentrations of either metal. Supplementation with 25 mg/l in CDM media resulted in a significant increase in EPO (1.7-fold) and IgG (2.6-fold) titers compared to control (no added zinc). Titers at this Zn concentration in CDM containing the insulin replacing agent aurintricarboxylic acid (ATA) (CDM + A) showed a 1.8-fold (EPO) and 1.2-fold (IgG) titers increase compared to control. ATA appeared to also reduce the specific productivity (Qp) enhancement induced by Zn-25, with up to 4.9-fold (DP12) and 1.9-fold (SK15) Qp increase in CDM compared to the 1.6-fold (DP12) and 1.5-fold (SK15) Qp increase observed in CDM + A. A 31% reduced Viable Cell Density (VCD) in DP12 was observed in both Zn-supplemented media (3 × 106 cells/ml vs 4.2 × 106 cells/ml, day 5), whereas SK15 Zn-25 cultures displayed a 24% lower peak only in CDM + A (2.2 × 106 cells/ml vs 3.2 × 106 cells/ml, day 5). Supplementation with copper at 13.7-20 mg/l resulted in less significant cell line/product-type dependent effects on titer, VCD and Viability. Analysis of the energetic phenotype of both cell lines in 25 mg/l Zn-supplemented CDM media revealed a twofold increase in the oxygen consumption rate (OCR) compared to non-supplemented cells. Together, these data suggest that high zinc supplementation may induce an increase in oxidative respiration metabolism that results in increased Qp and titers in suspension CHO cultures.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Antonio Alarcón Miguez
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Srinivas Suda
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Niall Barron
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Donal O’Gorman
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
13
|
Schelletter L, Albaum S, Walter S, Noll T, Hoffrogge R. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Appl Microbiol Biotechnol 2019; 103:8127-8143. [DOI: 10.1007/s00253-019-10020-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|
14
|
Tang H, Zhang X, Zhang W, Fan L, Wang H, Tan WS, Zhao L. Insight into the roles of tyrosine on rCHO cell performance in fed-batch cultures. Appl Microbiol Biotechnol 2019; 103:6483-6494. [PMID: 31190239 DOI: 10.1007/s00253-019-09921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/01/2022]
Abstract
Tyrosine (Tyr), as one of the least soluble amino acids, is essential to monoclonal antibody (mAb) production in recombinant Chinese hamster ovary (rCHO) cell cultures since its roles on maintaining the specific productivity (qmAb) and avoiding Tyr sequence variants. To understand the effects of Tyr on cell performance and its underlying mechanisms, rCHO cell-producing mAbs were cultivated at various cumulative Tyr addition concentrations (0.6 to 5.5 mM) in fed-batch processes. Low Tyr concentrations gave a much lower peak viable cell density (VCD) during the growth phase and also induced rapid cell death and pH decrease during the production phase, resulting in a low efficient fed-batch process. Autophagy was initiated following the inhibition of mTOR under the Tyr starvation condition. Excessive autophagy subsequently induced autophagic cell death, which was found as the major type of cell death in this study. Additionally, the results obtained here demonstrate that the decrease in culture pH under the Tyr starvation condition was associated with the autophagy and such pH drop might be attributed to the lysosome acidification and cell lysis.
Collapse
Affiliation(s)
- Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xintao Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Zhejiang, 311404, Hangzhou, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
15
|
Inhibition of Autolysosome Formation Improves rrhGAA Production Driven by RAmy3D Promoter in Transgenic Rice Cell Culture. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0005-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Dynamic metabolic network modeling of mammalian Chinese hamster ovary (CHO) cell cultures with continuous phase kinetics transitions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ritacco FV, Wu Y, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies. Biotechnol Prog 2018; 34:1407-1426. [DOI: 10.1002/btpr.2706] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Frank V. Ritacco
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Yongqi Wu
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Anurag Khetan
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| |
Collapse
|
18
|
Kaushik P, Henry M, Clynes M, Meleady P. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture. Biotechnol J 2018; 13:e1700221. [DOI: 10.1002/biot.201700221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Prashant Kaushik
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| |
Collapse
|
19
|
Tamošaitis L, Smales CM. Meta-Analysis of Publicly Available Chinese Hamster Ovary (CHO) Cell Transcriptomic Datasets for Identifying Engineering Targets to Enhance Recombinant Protein Yields. Biotechnol J 2018; 13:e1800066. [DOI: 10.1002/biot.201800066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Linas Tamošaitis
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| |
Collapse
|
20
|
Yadav PK, Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Chaube SK. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy. J Biomed Sci 2018; 25:36. [PMID: 29681242 PMCID: PMC5911955 DOI: 10.1186/s12929-018-0438-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian ovary contains millions of germ cells during embryonic life but only few of them are culminated into oocytes that achieve meiotic competency just prior to ovulation. The majority of germ cells are depleted from ovary through several pathways. Follicular atresia is one of the major events that eliminate germ cells from ovary by engaging apoptotic as well as non-apoptotic pathways of programmed cell death. Apoptosis is characterized by several morphological changes that include cell shrinkage, nuclear condensation, membrane blebbing and cytoplasmic fragmentation by both mitochondria- as well as death receptor-mediated pathways in encircling granulosa cells and oocyte. Although necroapoptosis have been implicated in germ cell depletion, autophagy seems to play an active role in the life and death decisions of ovarian follicles. Autophagy is morphologically characterized by intracellular reorganization of membranes and increased number of autophagic vesicles that engulf bulk cytoplasm as well as organelles. Autophagy begins with the encapsulation of cytoplasmic constituents in a membrane sac known as autophagosomes. The autophagic vesicles are then destroyed by the lysosomal enzymes such as hydrolases that results in follicular atresia. It seems that apoptosis as well as autophagy could play active roles in germ cells depletion from ovary. Hence, it is important to prevent these two pathways in order to retain the germ cells in ovary of several mammalian species that are either threatened or at the verge of extinction. The involvement of apoptosis and autophagy in germ cell depletion from mammalian ovary is reviewed and possible pathways have been proposed.
Collapse
Affiliation(s)
- Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
21
|
Su Y, Wu J, He J, Liu X, Chen X, Ding Y, Zhang C, Chen W, Wang Y, Gao R. High insulin impaired ovarian function in early pregnant mice and the role of autophagy in this process. Endocr J 2017; 64:613-621. [PMID: 28420820 DOI: 10.1507/endocrj.ej16-0494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolic disorders, such as PCOS (polycystic ovarian syndrome) and T2DM (type 2 diabetes mellitus), are associated with menstrual dysfunction, anovulation, infertility, and early pregnancy loss. Ovarian dysfunction is not only related to low pregnancy rates but also to the increased risk of miscarriage. Women with PCOS or T2DM, characterized by hyperinsulinemia, commonly experience ovarian dysfunction. In this study, we first explored whether high insulin levels directly affected ovarian functioning during embryo implantation. Mice in the insulin-treated group were given a subcutaneous injection of human recombinant insulin. After insulin treatment, serum levels of E2 (estrogen), PROG (progesterone), LH (luteinizing hormone), and FSH (follicle-stimulating hormone) were obviously lower, and there was a significant decrement of ovarian GDF9 (growth differentiation factor 9) mRNA. H&E (hematoxylin and eosin) staining showed a greater number of immature follicles and less luteinization in the insulin group. Further autophagy was studied in this process. A significant increase of P62 (SQSTM1/Sequestosome1) and a decrease of Cathepsin B, BECN1 (Beclin 1), and ULK1 (Unc-51-like kinase 1) mRNA in ovary was found in the insulin group. Western blot analysis showed that the expressions of LC3 (microtubule-associated protein 1 light chain 3), BECN1, and Cathepsin B proteins in ovaries from insulin group were obviously reduced, while P62 proteins were significantly increased. All these results illustrated that insulin could directly impair ovarian function during embryo implantation and the imbalance of ovarian autophagy due to insulin. Autophagy could enhance the impaired ovarian function results from insulin.
Collapse
Affiliation(s)
- Yan Su
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Juan Wu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Childen's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wenqi Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
22
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
23
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
24
|
Yuan B, Shen H, Lin L, Su T, Zhong L, Yang Z. Autophagy Promotes Microglia Activation Through Beclin-1-Atg5 Pathway in Intracerebral Hemorrhage. Mol Neurobiol 2016; 54:115-124. [PMID: 26732594 DOI: 10.1007/s12035-015-9642-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Previous study demonstrates that intracerebral hemorrhage (ICH) promotes microglia activation and inflammation. However, the exact mechanism of microglia activation induced by ICH is not clear. In this experiment, microglia autophagy was examined using electron microscopy, conversion of light chain 3(LC3), and monodansylcadaverine (MDC) staining to detect autophagic vacuoles. We found that ICH induced microglia autophagy and activation. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (BECN1 and ATG5) decreased the microglia activation and inflammation in ICH. Moreover, autophagy inhibitors reduced brain damage in ICH. In conclusion, these data indicate that ICH contributes to microglia autophagic activation through BECN1 and ATG5 and provide the therapeutical strategy for ICH.
Collapse
Affiliation(s)
- Bangqing Yuan
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China
| | - Hanchao Shen
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China
| | - Li Lin
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China
| | - Tonggang Su
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian, 350025, China
| | - Lina Zhong
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
25
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
26
|
Glutamine substitution: the role it can play to enhance therapeutic protein production. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Le H, Vishwanathan N, Jacob NM, Gadgil M, Hu WS. Cell line development for biomanufacturing processes: recent advances and an outlook. Biotechnol Lett 2015; 37:1553-64. [PMID: 25971160 DOI: 10.1007/s10529-015-1843-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.
Collapse
|
28
|
Spencer S, Gugliotta A, Koenitzer J, Hauser H, Wirth D. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 2015; 195:15-29. [DOI: 10.1016/j.jbiotec.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
|
29
|
Aghamohseni H, Ohadi K, Spearman M, Krahn N, Moo-Young M, Scharer JM, Butler M, Budman HM. Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J Biotechnol 2014; 186:98-109. [PMID: 25014402 DOI: 10.1016/j.jbiotec.2014.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 01/17/2023]
Abstract
The impact of operating conditions on the glycosylation pattern of humanized camelid monoclonal antibody, EG2-hFc produced by Chinese hamster ovary (CHO) cells has been evaluated by a combination of experiments and modeling. Cells were cultivated under different levels of glucose and glutamine concentrations with the goal of investigating the effect of nutrient depletion levels and ammonia build up on the cell growth and the glycoprofiles of the monoclonal antibody (Mab). The effect of average pH reduction on glycosylation level during the entire culture time or during a specific time span was also investigated. The relative abundance of glycan structures was quantified by hydrophilic interaction liquid chromatography (HILIC) and the galactosylation index (GI) and the sialylation index (SI) were determined. Lower initial concentrations of glutamine resulted in lower glucose consumption and lower cell yield but increased GI and SI levels when compared to cultures started with higher initial glutamine levels. Similarly, reducing the average pH of culture resulted in lower growth but higher SI and GI levels. These findings indicate that there is a tradeoff between cell growth, resulting Mab productivity and the achievement of desirable higher glycosylation levels. A dynamic model, based on a metabolic flux analysis (MFA), is proposed to describe the metabolism of nutrients, cell growth and Mab productivity. Finally, existing software (GLYCOVIS) that describes the glycosylation pathways was used to illustrate the impact of extracellular species on the glycoprofiles.
Collapse
Affiliation(s)
| | - Kaveh Ohadi
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada.
| | - Maureen Spearman
- Microbiology Department, University of Manitoba, Winnipeg, MB, Canada.
| | - Natalie Krahn
- Microbiology Department, University of Manitoba, Winnipeg, MB, Canada.
| | - Murray Moo-Young
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada.
| | - Jeno M Scharer
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada.
| | - Mike Butler
- Microbiology Department, University of Manitoba, Winnipeg, MB, Canada.
| | - Hector M Budman
- Chemical Engineering Department, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
30
|
Hussain H, Maldonado-Agurto R, Dickson AJ. The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnol Lett 2014; 36:1581-93. [PMID: 24752815 DOI: 10.1007/s10529-014-1537-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|