1
|
Okano H, Baba M, Kawato K, Hidese R, Yanagihara I, Kojima K, Takita T, Fujiwara S, Yasukawa K. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies. J Biosci Bioeng 2018; 125:275-281. [PMID: 29100684 DOI: 10.1016/j.jbiosc.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 01/14/2023]
Abstract
One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4polL329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4polL329A and RTX were highly affected by the concentrations of MgCl2 and Mn(OCOCH3)2 as well as those of K4polL329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4polL329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4polL329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4polL329A or RTX is more advantageous than the current one.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryota Hidese
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi 594-1101, Osaka, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Yasukawa K, Iida K, Okano H, Hidese R, Baba M, Yanagihara I, Kojima K, Takita T, Fujiwara S. Next-generation sequencing-based analysis of reverse transcriptase fidelity. Biochem Biophys Res Commun 2017; 492:147-153. [PMID: 28778390 DOI: 10.1016/j.bbrc.2017.07.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023]
Abstract
In this study, we devised a simple and rapid method to analyze fidelity of reverse transcriptase (RT) using next-generation sequencing (NGS). The method comprises a cDNA synthesis reaction from standard RNA with a primer containing a tag of 14 randomized bases and the RT to be tested, PCR using high-fidelity DNA polymerase, and NGS. By comparing the sequence of each read with the reference sequence, mutations were identified. The mutation can be identified to be due to an error introduced by either cDNA synthesis, PCR, or NGS based on whether the sequence reads with the same tag contain the same mutation or not. The error rates in cDNA synthesis with Moloney murine leukemia virus (MMLV) RT thermostable variant MM4 or the recently developed 16-tuple variant of family B DNA polymerase with RT activity, RTX, from Thermococcus kodakarensis, were 0.75-1.0 × 10-4 errors/base, while that in the reaction with the wild-type human immunodeficiency virus type 1 (HIV-1) RT was 2.6 × 10-4 errors/base. Overall, our method could precisely evaluate the fidelity of various RTs with different reaction conditions in a high-throughput manner without the use of expensive optics and troublesome adaptor ligation.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Okano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryota Hidese
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
3
|
Nishimura K, Yokokawa K, Hisayoshi T, Fukatsu K, Kuze I, Konishi A, Mikami B, Kojima K, Yasukawa K. Preparation and characterization of the RNase H domain of Moloney murine leukemia virus reverse transcriptase. Protein Expr Purif 2015; 113:44-50. [PMID: 25959458 DOI: 10.1016/j.pep.2015.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Moloney murine leukemia virus reverse transcriptase (MMLV RT) contains fingers, palm, thumb, and connection subdomains as well as an RNase H domain. The DNA polymerase active site resides in the palm subdomain, and the RNase H active site is located in the RNase H domain. The RNase H domain contains a positively charged α-helix called the C helix (H(594)GEIYRRR(601)), that is thought to be involved in substrate recognition. In this study, we expressed three versions of the RNase H domain in Escherichia coli, the wild-type domain (WT) (residues Ile498-Leu671) and two variants that lack the regions containing the C helix (Ile593-Leu603 and Gly595-Thr605, which we called ΔC1 and ΔC2, respectively) with a strep-tag at the N-terminus and a deca-histidine tag at the C-terminus. These peptides were purified from the cells by anion-exchange, Ni(2+) affinity, and Strep-Tactin affinity column chromatography, and then the tags were removed by proteolysis. In an RNase H assay using a 25-bp RNA-DNA heteroduplex, WT, ΔC1, and ΔC2 produced RNA fragments ranging from 7 to 16 nucleotides (nt) whereas the full-length MMLV RT (Thr24-Leu671) produced 14-20-nt RNA fragments, suggesting that elimination of the fingers, palm, thumb, and connection subdomains affects the binding of the RNase H domain to the RNA-DNA heteroduplex. The activity levels of WT, ΔC1, and ΔC2 were estimated to be 1%, 0.01%, and 0.01% of full-length MMLV RT activity, indicating that the C helix is important, but not critical, for the activity of the isolated RNase H domain.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kanta Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsuro Hisayoshi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kosuke Fukatsu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ikumi Kuze
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsushi Konishi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Inhibition of the DNA polymerase and RNase H activities of HIV-1 reverse transcriptase and HIV-1 replication by Brasenia schreberi (Junsai) and Petasites japonicus (Fuki) components. J Nat Med 2015; 69:432-40. [PMID: 25663480 DOI: 10.1007/s11418-015-0885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/31/2014] [Indexed: 01/22/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) possesses two distinct enzymatic activities: those of RNA- and DNA-dependent DNA polymerases and RNase H. In the current HIV-1 therapy, all HIV-1 RT inhibitors inhibit the activity of DNA polymerase, but not that of RNase H. We previously reported that ethanol and water extracts of Brasenia schreberi (Junsai) inhibited the DNA polymerase activity of HIV-1 RT [Hisayoshi et al. (2014) J Biol Macromol 14:59-65]. In this study, we screened 43 edible plants and found that ethanol and water extracts of Brasenia schreberi and water extract of Petasites japonicus strongly inhibit not only the activity of DNA polymerase to incorporate dTTP into poly(rA)-p(dT)15 but also the activity of RNase H to hydrolyze the RNA strand of an RNA/DNA hybrid. In addition, these three extracts inhibit HIV-1 replication in human cells, with EC50 values of 1-2 µg/ml. These results suggest that Brasenia schreberi and Petasites japonicus contain substances that block HIV-1 replication by inhibiting the DNA polymerase activity and/or RNase H activity of HIV-1 RT.
Collapse
|
5
|
Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochem Biophys Res Commun 2014; 454:269-74. [DOI: 10.1016/j.bbrc.2014.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
|