1
|
Wang P, Song X, Liang Q. Study on the Inhibitory Effect of Bioactive Peptides Derived from Yak Milk Cheese on Cholesterol Esterase. Foods 2024; 13:2970. [PMID: 39335898 PMCID: PMC11431439 DOI: 10.3390/foods13182970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The bioactive peptides derived from yak milk cheese exhibited cholesterol-lowering properties. However, there was limited research on their inhibitory effects on cholesterol esterase (CE) and elucidation of their potential inhibitory mechanisms. In this study, we identified CE-inhibiting peptides through virtual screening and in vitro assays. Additionally, molecular docking and molecular dynamics studies were conducted to explore the mechanisms. The results indicated that peptides RK7 (RPKHPIK), KQ7 (KVLPVPQ), QP13 (QEPVLGPVRGPFP), TL9 (TPVVVPPFL), VN10 (VYPFPGPIPN), LQ10 (LPPTVMFPPQ), and SN12 (SLVYPFPGPIPN) possessed molecular weights of less than 1.5 kDa and a high proportion of hydrophobic amino acids, demonstrating notable inhibitory effects on CE. Molecular docking and dynamics revealed that peptides RK7, KQ7, QP13, and VN10 bound to key amino acid residues Arg423, His435, and Ser422 of CE through hydrogen bonds, hydrophobic interactions, salt bridges, and π-π stacking, occupying the substrate-binding site and exerting inhibitory effects on CE. The four peptides were further synthesized to verify their CE-inhibitory effects in vitro. RK7, KQ7, QP13, and VN10 exhibited inhibitory activity on CE with IC50 values of 8.16 × 10-7 mol/L, 8.10 × 10-7 mol/L, 4.63 × 10-7 mol/L, and 7.97 × 10-7 mol/L; RK7, KQ7, QP13, and VN10 were effective in inhibiting CE after simulated gastrointestinal digestion, especially with a significant increase in the inhibitory activity of KQ7 and RK7, respectively. Our findings suggested that bioactive peptides from yak milk cheese represented a novel class of potential CE inhibitors.
Collapse
Affiliation(s)
- Peng Wang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Song
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Progress on membrane technology for separating bioactive peptides. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
4
|
Xue J, Zhang Q, Cao J, Tian Y, Zha G, Liu X, Liu W, Wang Y, Gui D, Cao C. Gel Electrophoresis Chip Using Joule Heat Self-Dissipation, Short Run Time, and Online Dynamic Imaging. Anal Chem 2021; 94:2007-2015. [PMID: 34958211 DOI: 10.1021/acs.analchem.1c03635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gel electrophoresis (GE) is one of the most general tools in biomedicine. However, it suffers from low resolution, and its mechanism has not been fully revealed yet. Herein, we presented the dispersion model of w2 (t) ∝ Tt, showing the band dispersion (w) via temperature (T) and running time (t) control. Second, we designed an efficient GE chip via the time control and rapid Joule heat self-dissipation by thermal conductive plastic (TCP) and electrode buffer. Third, we conducted the simulations on TCP and polymethylmethacrylate (PMMA) chips, unveiling that (i) the temperature of TCP was lower than the PMMA one, (ii) the temperature uniformity of TCP was better than the PMMA one, and (iii) the resolution of TCP was superior to the PMMA one. Fourth, we designed both TCP and PMMA chips for experimentally validating the dispersion model, TCP chip, and simulations. Finally, we applied the TCP chip to thalassemia and model urine protein assays. The TCP chip has merits of high resolution, rapid run of 6-10 min, and low cost. This work paves the way for greatly improving electrophoretic techniques in gel, chip, and capillary via temperature and time control for biologic study, biopharma quality control, clinical diagnosis, and so on.
Collapse
Affiliation(s)
- Jingjing Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Youli Tian
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Genhan Zha
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaoping Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Weiwen Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuxing Wang
- School of Physics and Astronomies, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dingkun Gui
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.,School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Baba WN, Mudgil P, Baby B, Vijayan R, Gan CY, Maqsood S. New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates: Identification, characterization, and molecular interaction. J Dairy Sci 2021; 104:7393-7405. [PMID: 33934858 DOI: 10.3168/jds.2020-19868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
Novel antihypercholesterolemic bioactive peptides (BAP) from peptic camel whey protein hydrolysates (CWPH) were generated at different time, temperature, and enzyme concentration (%). Hydrolysates showed higher pancreatic lipase- (PL; except 3 CWPH) and cholesterol esterase (CE)-inhibiting potential, as depicted by lower half-maximal inhibitory concentration values (IC50 values) compared with nonhydrolyzed camel whey proteins (CWP). Peptide sequencing and in silico data depicted that most BAP from CWPH could bind active site of PL, whereas as only 3 peptides could bind the active site of CE. Based on higher number of reactive residues in the BAP and greater number of substrate binding sites, FCCLGPVPP was identified as a potential CE-inhibitory peptide, and PAGNFLPPVAAAPVM, MLPLMLPFTMGY, and LRFPL were identified as PL inhibitors. Molecular docking of selected peptides showed hydrophilic and hydrophobic interactions between peptides and target enzymes. Thus, peptides derived from CWPH warrant further investigation as potential candidates for adjunct therapy for hypercholesterolemia.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, 15551 Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Gomes C, Ferreira D, Carvalho JPF, Barreto CAV, Fernandes J, Gouveia M, Ribeiro F, Duque AS, Vieira SI. Current genetic engineering strategies for the production of antihypertensive ACEI peptides. Biotechnol Bioeng 2020; 117:2610-2628. [PMID: 32369185 DOI: 10.1002/bit.27373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these "pharming" platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.
Collapse
Affiliation(s)
- Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.,Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Diana Ferreira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - João P F Carvalho
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Carlos A V Barreto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Joana Fernandes
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Marisol Gouveia
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Fernando Ribeiro
- School of Health Sciences (ESSUA), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Ana S Duque
- Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Metabolic Syndrome-Preventive Peptides Derived from Milk Proteins and Their Presence in Cheeses: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) is defined as the occurrence of diet-related diseases such as abdominal obesity, atherogenic dyslipidemia, hyperglycemia (insulin resistance) and hypertension. Milk-derived peptides are well-known agents acting against high blood pressure, blood glucose level, and lipoprotein disproportion. The aim of this review are metabolic syndrome-preventive peptides derived from milk proteins which were identified in cheeses. Special attention was paid to the sequences acting as angiotensin converting enzyme (ACE), dipeptidyl peptidase IV (DDP4), and α-glucosidase inhibitors, as well as antioxidative, hypocholesterolemic, antiobesity, and anti-inflammatory agents. Some results of meta-analyses concerning the consumption of cheese and the risk of MetS diseases were also presented.
Collapse
|
8
|
|
9
|
Iwaniak A, Darewicz M, Minkiewicz P. Peptides Derived from Foods as Supportive Diet Components in the Prevention of Metabolic Syndrome. Compr Rev Food Sci Food Saf 2017; 17:63-81. [PMID: 33350059 DOI: 10.1111/1541-4337.12321] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Metabolic syndrome (MSyn) includes physiological, biochemical, clinical, and metabolic abnormalities, leading to an increase in health problems like obesity, dyslipidemia, cardiovascular diseases, and diabetes, which contribute to an increase in mortality rate. One of the main factors having a key impact on our health is the food we consume. Thus, scientists work towards the discovery of novel bioactive compounds with therapeutic potential to address MSyn. According to scientific reports, peptides derived from food proteins exhibit bioactivities important for the prevention of MSyn diseases; that is, they regulate blood pressure and glycemia; reduce cholesterol level and body mass; and scavenge free radicals. The aim of this review is to study the potential role of peptides in the prevention of MSyn. Particularly peptides which exhibit the following activities: antihypertensive [angiotensin-converting enzyme (ACE) inhibition (EC 3.4.15.1)], antidiabetic [dipeptidyl peptidase IV (DPP-IV) (EC 3.4.14.5)/α-glucosidase (EC 3.2.1.20)/α-amylase (EC 3.2.1.1) inhibition)], cholesterol level reduction, antioxidative, and obesity prevention, were studied. If possible, special attention is paid in the review to the bioactivities of peptides that were measured in vivo. Some examples of peptides showing dual or multiple action against MSyn targets are presented. Moreover, using the database of bioactive peptide sequences (BIOPEP) we made a list of peptides serving simultaneous functions in counteracting MSyn dysfunctions. Such an approach may simplify the discovery of MSyn preventive peptides, as well as highlight some of them as potent bioactive ingredients that may be incorporated into foods. Moreover, the research strategy involving the in silico and in vitro/in vivo methodologies may be useful in the production of food protein hydrolysates supporting the treatment of MSyn dysfunctions.
Collapse
Affiliation(s)
- Anna Iwaniak
- Faculty of Food Science, Chair of Food Biochemistry, Univ. of Warmia and Mazury in Olsztyn, Pl. Cieszynski 1, 10-726 Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- Faculty of Food Science, Chair of Food Biochemistry, Univ. of Warmia and Mazury in Olsztyn, Pl. Cieszynski 1, 10-726 Olsztyn-Kortowo, Poland
| | - Piotr Minkiewicz
- Faculty of Food Science, Chair of Food Biochemistry, Univ. of Warmia and Mazury in Olsztyn, Pl. Cieszynski 1, 10-726 Olsztyn-Kortowo, Poland
| |
Collapse
|
10
|
Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the Scomberomorus niphonius protein. Food Chem 2017; 223:89-95. [DOI: 10.1016/j.foodchem.2016.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 11/24/2016] [Accepted: 12/10/2016] [Indexed: 11/19/2022]
|
11
|
The Role of Food Peptides in Lipid Metabolism during Dyslipidemia and Associated Health Conditions. Int J Mol Sci 2015; 16:9303-13. [PMID: 25918936 PMCID: PMC4463589 DOI: 10.3390/ijms16059303] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
Animal and human clinical studies have demonstrated the ability of dietary food proteins to modulate endogenous lipid levels during abnormal lipid metabolism (dyslipidemia). Considering the susceptibility of proteins to gastric proteolytic activities, the hypolipidemic functions of proteins are possibly due, in part, to their peptide fragments. Food-derived peptides may directly modulate abnormal lipid metabolism in cell cultures and animal models of dyslipidemia. The peptides are thought to act by perturbing intestinal absorption of dietary cholesterol and enterohepatic bile acid circulation, and by inhibiting lipogenic enzymatic activities and gene expression in hepatocytes and adipocytes. Recent evidence indicates that the hypolipidemic activities of some peptides are due to activation of hepatic lipogenic transcription factors. However, detailed molecular mechanisms and structural requirements of peptides for these activities are yet to be elucidated. As hypolipidemic peptides can be released during enzymatic food processing, future studies can explore the prospects of combating metabolic syndrome and associated complications using peptide-rich functional food and nutraceutical products.
Collapse
|