1
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
A new carboxypeptidase from Aspergillus niger with good thermostability, pH stability and broad substrate specificity. Sci Rep 2021; 11:18745. [PMID: 34548523 PMCID: PMC8455534 DOI: 10.1038/s41598-021-98003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
A new serine carboxypeptidase gene, capA, was identified in Aspergillus niger CBS 513.88 by reading genomic information and performing sequence alignment, and the gene was cloned and expressed in Pichia pastoris GS115. In a shake flask, the enzyme activity of the recombinant strain GS115 (pPIC9K-capA) reached 209.3 U mg−1. The optimal temperature and pH for enzyme activity were determined to be 45 °C and 6.0, respectively. After incubation at 40–50 °C or at pH 4.0–8.0 for 1 h, the enzyme retained more than 80% or 60% of its initial activity. The presence of 1–10 mmol L−1 Mg2+ enhanced the activity of CapA, whereas 1–10 mmol L−1 Cu2+, Fe2+, or Co2+, 10 mmol L−1 Mn2+, or 1–10 mmol L−1 phenylmethylsulfonyl fluoride (PMSF) significantly inhibited its activity. CapA had a broad substrate specificity and preferred the hydrophobic amino acids Leu and Lys at the C terminus of proteins, and N-benzyloxycarbonyl-l-phenylalanyl-l-leucine (Cbz-Phe-Leu) was the optimal substrate, for which CapA exhibited Km 0.063 mmol L−1 and kcat/Km 186.35 mmol L−1 s−1. The good thermostability, pH stability and hydrolysis characteristics of CapA provide a solid foundation for application in the food and biotechnology fields.
Collapse
|
3
|
Song W, Zhang N, Yang M, Zhou Y, He N, Zhang G. Multiple strategies to improve the yield of chitinase a from Bacillus licheniformis in Pichia pastoris to obtain plant growth enhancer and GlcNAc. Microb Cell Fact 2020; 19:181. [PMID: 32933546 PMCID: PMC7493387 DOI: 10.1186/s12934-020-01440-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Chitinase and chitin-oligosaccaride can be used in multiple field, so it is important to develop a high-yield chitinase producing strain. Here, a recombinant Pichia pastoris with 4 copies of ChiA gene from Bacillus licheniformis and co-expression of molecular chaperon HAC1 was constructed. The amount of recombinant ChiA in the supernatant of high-cell-density fermentation reaches a maximum of 12.7 mg/mL, which is 24-fold higher than that reported in the previous study. The recombinant ChiA can hydrolyze 30% collodidal chitin with 74% conversion ratio, and GlcNAc is the most abundant hydrolysis product, followed by N, N′-diacetylchitobiose. Combined with BsNagZ, the hydrolysate of ChiA can be further transformed into GlcNAc with 88% conversion ratio. Additionally, the hydrolysate of ChiA can obviously accelerate the germination growth of rice and wheat, increasing the seedling height and root length by at least 1.6 folds within 10 days.
Collapse
Affiliation(s)
- Wen Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Nuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Mo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Raschmanová H, Paulová L, Branská B, Knejzlík Z, Melzoch K, Kovar K. Production and cleavage of a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. Folia Microbiol (Praha) 2018; 63:773-787. [DOI: 10.1007/s12223-018-0619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
|
5
|
Xu XQ, Su BM, Xie JS, Li RK, Yang J, Lin J, Ye XY. Preparation of bioactive neoagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis agar: A comparative study. Food Chem 2017; 240:330-337. [PMID: 28946280 DOI: 10.1016/j.foodchem.2017.07.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/07/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Hydrolysis of Gracilaria lemaneiformis agar by β-agarase was compared with HCl hydrolysis. The results showed that optimum catalysis conditions for the β-agarase were pH 7.0 at 45°C. Mass spectroscopy, thin-layer chromatography and GPC results showed that the polymerization degrees of the hydrolysis products by the β-agarase were mainly four, six and eight (more specific than the hydrolysate by HCl). The enzymatic degradation products of agar were distinctly different from those of HCl hydrolysis in the ratios among galactose and 3,6-anhydro-galactose and sulfate group contents. The NMR spectrometry proved that the products of β-agarase were neoagaroligosaccharides, which was not found in the agarolytic products by HCl. The neoagarotetraose inhibited tyrosinase activity competitively with the KI value of 16.0mg/ml. Hydroxyl radical-scavenging ability of neoagaroligosaccharides was much greater than that of agar HCl hydrolysate. This work suggests that neoagaroligosaccharide products produced by our β-agarase could be more effective in function than products from acid hydrolysis.
Collapse
Affiliation(s)
- Xin-Qi Xu
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bing-Mei Su
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jin-Sheng Xie
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ren-Kuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xiu-Yun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
6
|
High-level expression and characterization of the Bacillus subtilis subsp. subtilis str. BSP1 YwaD aminopeptidase in Pichia pastoris. Protein Expr Purif 2016; 122:23-30. [PMID: 26898926 DOI: 10.1016/j.pep.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 01/16/2023]
Abstract
Aminopeptidases are widely used for creating protein hydrolysates and peptide sequencing. The ywaD gene from a new Bacillus isolate, named Bacillus subtilis subsp. subtilis str. BSP1, was cloned into the yeast expression vector pHBM905A and expressed and secreted by Pichia pastoris strain GS115. The deduced amino acid sequence of the aminopeptidase encoded by the ywaD gene shared up to 98% identity with aminopeptidases from B. subtilis strains 168 and zj016. The yield (3.81 g/l) and specific activity (788 U/mg) of recombinant YwaD in high-density fermentation were extremely high. And 829.83 mg of the purified enzyme (4089.72 U/mg) were harvested. YwaD was glycosylated, and its activity decreased after deglycosylation, which was similar to that of the aminopeptidase from B. subtilis strain zj016. YwaD was most active toward l-arginine-4-nitroanilide. Moreover, it exhibited high resistance to carbamide, which was not true for aminopeptidases from B. subtilis strains 168 and zj016, which could simplify the purification of YwaD. Moreover, the expression and parts of characterization of the aminopeptidase from B. subtilis strain 168 in Pichia pastoris were added as supplementary material. The sequence and other characteristics of YwaD were compared with those of aminopeptidases from B. subtilis strains 168 and zj016, and they will provide a solid foundation for further research on the influence of amino acid mutations on the function of aminopeptidases.
Collapse
|
7
|
Shu M, Shen W, Wang X, Wang F, Ma L, Zhai C. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Expr Purif 2015; 114:149-55. [PMID: 26118809 DOI: 10.1016/j.pep.2015.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/26/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Trypsin is a typical member of serine protease families, specifically cleaving the carboxyl group of peptides at the basic amino acids arginine and lysine. The gene fragment of porcine trypsin with its propeptide coding sequence was optimized and synthesized according to the codon usage bias of Pichia pastoris. The optimized sequence was integrated into the genome of P. pastoris GS115 using the vector pHBM905A. The yield of the recombinant protein was 0.48mg/ml with a maximum activity of 19.2U/ml after 96-h induction in a 5-l fermenter. An optimum activity for the recombinant trypsin was observed at 35°C and pH 8.5. This is the first time to express the porcine trypsinogen with P. pastoris expression system. This report also found that the propeptide was cleaved from the recombinant protein and the enzymogen was transferred into trypsin at the later phase of the fed-batch cultivation. In particular, the activation process can be initiated by changing pH.
Collapse
Affiliation(s)
- Min Shu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Wei Shen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Xiaojuan Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Chao Zhai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|