1
|
Nie M, Wang J, Zhang K. Engineering a Novel Acetyl-CoA Pathway for Efficient Biosynthesis of Acetyl-CoA-Derived Compounds. ACS Synth Biol 2024; 13:358-369. [PMID: 38151239 DOI: 10.1021/acssynbio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Acetyl-CoA is an essential central metabolite in living organisms and a key precursor for various value-added products as well. However, the intracellular availability of acetyl-CoA limits the efficient production of these target products due to complex and strict regulation. Here, we proposed a new acetyl-CoA pathway, relying on two enzymes, threonine aldolase and acetaldehyde dehydrogenase (acetylating), which can convert one l-threonine into one acetyl-CoA, one glycine, and generate one NADH, without carbon loss. Introducing the acetyl-CoA pathway could increase the intracellular concentration of acetyl-CoA by 8.6-fold compared with the wild-type strain. To develop a cost-competitive and genetically stable acetyl-CoA platform strain, the new acetyl-CoA pathway, driven by the constitutive strong promoter, was integrated into the chromosome of Escherichia coli. We demonstrated the practical application of this new acetyl-CoA pathway by high titer production of β-alanine, mevalonate, and N-acetylglucosamine. At the same time, this pathway achieved a high-yield production of glycine, a value-added commodity chemical for the synthesis of glyphosate and thiamphenicol. This work shows the potential of this new acetyl-CoA pathway for the industrial production of acetyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
2
|
Wang Z, Fan C, Zheng X, Jin Z, Bei K, Zhao M, Kong H. Roles of Surfactants in Oriented Immobilization of Cellulase on Nanocarriers and Multiphase Hydrolysis System. Front Chem 2022; 10:884398. [PMID: 35402378 PMCID: PMC8983819 DOI: 10.3389/fchem.2022.884398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactants, especially non-ionic surfactants, play an important role in the preparation of nanocarriers and can also promote the enzymatic hydrolysis of lignocellulose. A broad overview of the current status of surfactants on the immobilization of cellulase is provided in this review. In addition, the restricting factors in cellulase immobilization in the complex multiphase hydrolysis system are discussed, including the carrier structure characteristics, solid-solid contact obstacles, external diffusion resistance, limited recycling frequency, and nonproductive combination of enzyme active centers. Furthermore, promising prospects of cellulase-oriented immobilization are proposed, including the hydrophilic-hydrophobic interaction of surfactants and cellulase in the oil-water reaction system, the reversed micelle system of surfactants, and the possible oriented immobilization mechanism.
Collapse
Affiliation(s)
- Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Chunzhen Fan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Zhan Jin
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Ke Bei
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Hainan Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Lee YS, Lim K, Minteer SD. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annu Rev Phys Chem 2021; 72:467-488. [DOI: 10.1146/annurev-physchem-090519-050109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for ( a) CO2 fixation, ( b) high value-added product formation, ( c) sustainable energy sources via deep oxidation, and ( d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Chen J, Zhu R, Zhou J, Yang T, Zhang X, Xu M, Rao Z. Efficient single whole-cell biotransformation for L-2-aminobutyric acid production through engineering of leucine dehydrogenase combined with expression regulation. BIORESOURCE TECHNOLOGY 2021; 326:124665. [PMID: 33540211 DOI: 10.1016/j.biortech.2021.124665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Leucine dehydrogenase (LDH) is widely used in the preparation of L-2-aminobutyric acid (L-2-ABA), however its wide application is limited by 2-ketobutyric acid (2-OBA) inhibition. Firstly, a novel high-throughput screening method of LDH was established, specific enzyme activity and 2-OBA tolerance of Lys72Ala mutant were 33.3% higher than those of the wild type. Subsequently, we constructed a single cell comprised of ivlA, EsldhK72A, fdh and optimized expression through fine-tuning RBS intensity, so that the yield of E. coli BL21/pET28a-R3ivlA-EsldhK72A-fdh was 2.6 times higher than that of the original strain. As a result, 150 g L-threonine was transformed to 121 g L-2-ABA in 5 L fermenter with 95% molar conversion rate, and a productivity of 5.04 g·L-1·h-1, which is the highest productivity of L-2-ABA currently reported by single-cell biotransformation. In summary, our research provided a green synthesis for L-2-ABA, which has potential for industrial production of drug precursors.
Collapse
Affiliation(s)
- Jiajie Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Rongshuai Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
5
|
Liu Y, Han L, Cheng Z, Liu Z, Zhou Z. Enzymatic Biosynthesis of l-2-Aminobutyric Acid by Glutamate Mutase Coupled with l-Aspartate-β-decarboxylase Using l-Glutamate as the Sole Substrate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yufeng Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Song W, Xu X, Gao C, Zhang Y, Wu J, Liu J, Chen X, Luo Q, Liu L. Open Gate of Corynebacterium glutamicum Threonine Deaminase for Efficient Synthesis of Bulky α-Keto Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuxuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
7
|
Song W, Chen X, Wu J, Xu J, Zhang W, Liu J, Chen J, Liu L. Biocatalytic derivatization of proteinogenic amino acids for fine chemicals. Biotechnol Adv 2020; 40:107496. [DOI: 10.1016/j.biotechadv.2019.107496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
|
8
|
Velasco‐Lozano S, Santiago‐Arcos J, Mayoral JA, López‐Gallego F. Co‐immobilization and Colocalization of Multi‐Enzyme Systems for the Cell‐Free Biosynthesis of Aminoalcohols. ChemCatChem 2020. [DOI: 10.1002/cctc.201902404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susana Velasco‐Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Javier Santiago‐Arcos
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
| | - José A. Mayoral
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando López‐Gallego
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
9
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
10
|
Xu JM, Cheng F, Fu FT, Hu HF, Zheng YG. Semi-Rational Engineering of Leucine Dehydrogenase for L-2-Aminobutyric Acid Production. Appl Biochem Biotechnol 2016; 182:898-909. [DOI: 10.1007/s12010-016-2369-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022]
|
11
|
Binay B, Alagöz D, Yildirim D, Çelik A, Tükel SS. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH. Beilstein J Org Chem 2016; 12:271-7. [PMID: 26977186 PMCID: PMC4778513 DOI: 10.3762/bjoc.12.29] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
This study aimed to prepare robust immobilized formate dehydrogenase (FDH) preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150), Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU), and Immobead 150 support functionalized with aldehyde groups (FDHIALD). The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t1/2) of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.
Collapse
Affiliation(s)
- Barış Binay
- Istanbul AREL University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Tepekent, Büyükcekmece, Istanbul, Turkey
| | - Dilek Alagöz
- University of Cukurova, Vocational School of Imamoglu, Adana, Turkey
| | - Deniz Yildirim
- University of Cukurova, Vocational School of Ceyhan, Adana, Turkey
| | - Ayhan Çelik
- Gebze Technical University, Department of Chemistry, Gebze, Kocaeli, Turkey
| | - S Seyhan Tükel
- University of Cukurova, Faculty of Arts and Sciences, Department of Chemistry, 01330, Adana, Turkey
| |
Collapse
|